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Technical University of Ostrava for the opportunity to participate on teaching and
taking lectures. Furthermore, I want to thank to doc. Mgr. Vı́t Vondrák, PhD. and
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Abstract
The thesis focuses on solving the optimization problems of a minimization a convex
quadratic function on a special convex set. Such problems appear in many engineer-
ing applications, e.g., in the solution of contact problems of elasticity or in particle
dynamics simulations. The number of unknows in these practical problems usually
exceeds the potential of sequential algorithms. In the thesis, we present iterative
methods which can be easily parallelizable.
The text is divided into three parts; the review of the basic quadratic programming
theory, the algorithms for solving the problem, and the numerical experiments.
We demonstrate and compare the efficiency of the algorithms on the solution of
benchmarks with millions unknowns solved at the Anselm supercomputer of the
IT4Innovations National Supercomputing Center.

Keywords: optimization, quadratic programming, contact problems, many-body
simulations

Abstrakt
Disertačńı práce se zaměřuje na řešeńı optimalizačńıch úloh minimalizace konvexńı

kvadratické funkce na speciálńıch konvexńıch množinách. Tyto úlohy se vyskytuj́ı v
mnoha technických aplikaćıch jako např́ıklad řešeńı kontaktńıch úloh lineárńı elas-
ticity a řešeńı úloh částicové dynamiky. Počet neznámých takovýchto praktických
úloh obvykle překračuje možnosti sekvenčńıch algoritmů. Zde prezentované algo-
ritmy jsou však snadno paralelizovatelné.
Text je rozdělen do tř́ı část́ı - krátké shrnut́ı teorie kvadratického programováńı,
algoritmy pro řešeńı úlohy a numerické experimenty. Efektivita prezentovaných
algoritmů je demonstrována a porovnána na řešeńı úloh s miliony neznámých na
superpoč́ıtači Anselm Národńıho Superpoč́ıtačového Centra IT4Innovations.

Kĺıčová slova: optimalizace, kvadratické programováńı, kontaktńı úlohy, simulace
v́ıce těles
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Introduction

The numerical solution of many engineering problems leads to the problem of min-
imization of a convex quadratic function subject to a given set of equality and/or
inequality constraints. The applications that will benefit from the developement
of optimal algorithms for solving such optimization problem are, for instance, the
linear elasticity contact problems or the simulation of granular dynamics.
The problem is given by

x̄ := arg min
x∈Ω

f(x) , (1)

where the cost function f : Rn → R is a convex quadratic function and the feasible
set Ω ⊂ Rn is a special closed convex set. This problem will be reffered as Quadratic
Programming (QP) problem. We are mostly interested in the development of algo-
rithms for the solution of large-scale problem with large number of unknowns given
by the problem dimension n ∈ N.
The QP term usually denotes the problems with a feasible set described by linear
inequality constraints. The problems of more general inequalities are much more
difficult to solve. However, the basic principles of the solution, e.g., the solution con-
ditions, still remain applicable in modified form. Therefore, we decided to generalize
this term to the optimization problems of convex quadratic function minimization
on any closed convex set described by the separable inequalities with differentiable
constraint functions.
For instance, if we consider a linear elasticity contact problem with friction, the
feasible set Ω is described not only by linear inequalities, which represent the non-
penetration conditions, but also by an additional separable spherical or elliptical
inequality constraints representing the friction conditions.
Thus we are also interested in the problems where the feasible set is described not
only by inequality constraints, but also by additional equality constraints. These
constraints can, for instance, describe gluing conditions in non-overlapping domain
decomposition methods, such as Finite Element Tearing and Interconnection meth-
ods (FETI). In this case, we use our algorithms for inequality constraints as an inner
loop of Augmented Lagrangian method.
The thesis is organized as follows. In Section 1, we review shortly the problem
properties and discuss a solvability and an uniqueness of the solution. We recall
the theory necessary for the developement of algorithms. These algorithms are pre-
sented in Section 2. We are mostly interested in the active-set methods, but for
comparison, we choose also other types of methods suggested and sucessfully tested
on QP problems by other authors. The other algoritms are usually designed to solve
more general problems and they are not using all properties of cost quadratic func-
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tion and/or feasible set. Therefore, we suggest our modifications of these methods
for solving our QP problems. Moreover, we also briefly review a modification of
Augmented Lagrangian method for solving problems with additional linear equal-
ity constraints. This method is used as an outer loop of the algorithm for solving
QP problems with the combination of equality and inequality constraints and takes
care of equality constraints. The problem in inner loop is QP with only inequality
constraints. Therefore, we can focus only on the problems with inequalities in the
thesis, but practically we are able to solve problems with both types of constraints.
Finally, in Section 3 we compare the efficiency of algorithms. We solve the problems
arising in practical applications, such as linear elasticity contact problems with fric-
tion or multibody dynamics problems.
Our algorithms were firstly implemented in Matlab and tested on reasonable large
problems. Afterwards, we implemented the algorithms in C programming language
to PERMON library, which is more suitable for high performace computing. The
algorithms for solving linear elasticity contact problems were tested at the Anselm
supercomputer of the IT4Innovations National Supercomputing Center. The numer-
ical experiments of particle dynamics were implemented in C programming language
with CUDA toolkit and tested on GPU card.

Contribution of the thesis
The thesis includes fundamental concepts, algorithms, and applications adopted from

several sources and several authors. The source of these foreign ideas is always quoted.
For the sake of simplicity, the original author’s ideas are not explicitly determined in the
text. However, in this short section we introduce a short list of author’s contributions.

The thesis are based on papers published in journals and conference proceedings. Au-
thor of the thesis is a main author and/or co-author of these contributions. Moreover,
these results have been presented on several international and domestic conferences. For
full list see section Author’s bibliography. Author has been cooperating on the paper about
short review of QP [34], and developement of new algorithms PBBf (Section 2.2, [60]),
MwPGP (Section 2.4.3, [15]), and MPRGPS (Section 2.4.5, [35]). Author published the
idea of the extension of active-set algorithm by projected Barzilai-Borwein method instead
of constant step-length MPGP-BB in [58]. He is also a main author of the publication
focused on granular dynamics [59].

Moreover, this text includes the ideas and the results, which have not been published
yet and they are fully auctorial. Author presents his original simplification of Spectral
Projected Gradient method for solving QP. This algorithm was called SPG-QP and it
performes only one matrix-vector multiplication during the iteration (Section 2.1.4). Au-
thor proved equivalency between reduced and mapping gradient (Lemma 2.3.1) and he
presented the review of APGD method with projected gradient instead of mapping gra-
dient (Section 2.3). Author suggested the combination of outer SMALSE-M with QP
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algorithms different than MPGP or MPRGP; the combinations with SPG-QP, MPGP-
BB, APGD are original. Author presents the generalization of the projected gradient
definition with general separable index sets; these definitions in other sources are usually
presented for problems with specific feasible sets (Section 1.5.1). Author extended the
theorem about condition number of penalized matrices and presents the proof (Theorem
1.8.2). The thesis includes new results in the solvability of inner optimization problems in
multi-body simulations, see Lemma 3.3.3 (property of QP in problems without friction),
Theorem 3.3.1 (about solvability of problems without friction), Lemma 3.3.4 (property of
QP in problems with friction), Theorem 3.3.2 (about solvability of problems with friction),
and Lemma 3.3.5 (independence of solution and velocity).

Author of the thesis has implemented algorithms in Matlab, CUDA and PETSc. The
implementation of algorithms in PETSc is a part of PERMON toolbox, see Hapla [43].
Nowadays, this open-source code is developed at IT4Innovations by several researchers.
Author of the thesis has been participating on the implementation of generalized con-
straints and he has implemented QP algorithms for solving the problems with generalized
separable inequalities, such as MPGP-BB, PBBf, SPG-QP, and APGD. The idea of CUDA
implementation has been inspired by the Chrono::GPU software developed in SBEL Uni-
versity of Wisconsin-Madison [3]. However, author of the thesis has created his own code
from the scratch and during this time he gained a lot of experience in CUDA programming
and multi-body dynamics problems.

All bechmarks in the thesis are fully original, except the linear elasticity contact prob-
lem with friction in Section 3.2.3. This experiment has been proposed by Dostál and
published in collective paper, see Bouchala et al. [15].
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Notations and preliminarities

In this section, we shortly present the notations used throughout the thesis. For
exact declarations, definitions, and basic properties of these objects, we refer to any
basic course of linear algebra and numerical optimization, for instance Laub [51],
Nocedal and Wright [54], Boyd and Vandenberghe [17], Golub and Van Loan [41],
or Dostál [26].

Rn standard n-dimensional real vector
space, we denote the number of vector
components by n ∈ N.

v ∈ Rn real n-dimensional vector. In whole
thesis we consider only column (ver-
tical) vectors. The null vector is de-
noted by 0.

0 ∈ R, 0 ∈ Rn, 0 ∈ Rm,n zero or null vector or matrix; the
meaning is clear from the context.

vj, j = 1, . . . , n components of n-dimensional real vec-
tor.

A ∈ Rm,n real matrix of dimension m,n, where
m denotes the number of rows and n
denotes the number of columns. The
identity matrix is denoted by I.

Ai,j, i = 1, . . . ,m, j = 1, . . . , n components of m,n-dimensional ma-
trix, where i denotes the index of the
row and j denotes the index of the
column.

AT transpose of a matrix.
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A−1, A+ matrix inverse, matrix pseudoinverse;
If A is a nonsingular matrix, then
there exists matrix A−1 such that

A−1A = AA−1 = I .

Nevertheless, even if A is a singular
matrix, there exists matrix A+ such
that weaker condition is fulfilled

AA+A = A .

diag (α1, . . . , αn) diagonal matrix of dimension n
defined by diagonal entries.

Di,j =

⎧⎪⎨⎪⎩ αi if i = j,

0 elsewhere.

A = UDUT spectral decomposition of square sym-
metric matrix A ∈ Rn,n;
U = [v1, . . . , vn] ∈ Rn,n is orthogonal
matrix whose columns are the eigen-
vectors,
D = diag (λ1, . . . , λn) is the diago-
nal matrix whose diagonal entries are
eigenvalues corresponding to eigen-
vectors.
Each pair λi, vi, i = 1, . . . , n satisfies

Avi = λivi .

σ(A), λAmax, λ
A
min the spectrum of matrix A (the set

of eigenvalues), the largest and the
smallest eigenvalue. If the superscript
is not present, the object matrix is
clear from the context.
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κ(A), κ̂(A) the condition number of SPD matrix
A; the ratio between the largest and
the smallest eigenvalue of A

κ(A) := λAmax
λAmin

≥ 1.

If the matrix A is only SPS, we can de-
fine regular condition number; the ra-
tio between the largest and the small-
est nonzero eigenvalue of A

κ̂(A) := λAmax
min{λ ∈ σ(A) : λ > 0}

≥ 1.

SPS matrix the symmetric positive semidefinite
matrix; the square symmetric matrix
A ∈ Rn,n which satisfies

∀x ∈ Rn : xTAx ≥ 0 .

SPS matrices have real nonnegative
eigenvalues. The number of zero
eigenvalues is equal to dim KerA.

KerA the kernel (or the null space) of matrix
A ∈ Rm,n; the subspace of Rn defined
by

KerA := {x ∈ Rn : Ax = 0} .

ImA the image of matrix A ∈ Rm,n; the
subspace of Rm defined by

ImA := {Ax ∈ Rm|x ∈ Rn} .
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span {v1, . . . , vm} ⊂ Rn span of the vector set; the subspace of
Rn which consists of all linear combi-
nations of vectors

v1, . . . , vm ∈ Rn .

dim V the dimension of vector space V ; the
number of basis vectors.

f : Rn → R real function of n real variables.
∇f : Rn → Rn the gradient (vector of partial deriva-

tives) of function f : Rn → R.
If the function f is a function of more
vector variables, for example f(x, y) :
Rn+m → R, then the part of the gra-
dient corresponding to partial deriva-
tives of given vector variable is de-
noted using lower index, for exam-
ple ∇xf(x, y) is a vector of partial
derivatives corresponding to the com-
ponents of x.

∇2f : Rn → Rn,n the Hessian matrix (matrix of sec-
ond partial derivatives) of function
f : Rn → R.
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⟨., .⟩ : Rn × Rn → R standard Euclidean real scalar prod-
uct (dot product) defined for all x, y ∈
Rn by

⟨x, y⟩ := xTy =
n∑
i=1

xiyi .

The dot product is a mapping with
these properties:

• ∀x, y ∈ Rn : ⟨x, y⟩ = ⟨y, x⟩,

• ∀x ∈ Rn : ⟨x, x⟩ ≥ 0, (⟨x, x⟩ =
0 ⇔ x = 0),

• ∀x, y, z ∈ Rn ∀α ∈ R : ⟨x +
y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩, ⟨αx, y⟩ =
α⟨x, y⟩.

∥.∥ : Rn → R+
0 standard Euclidean norm defined for

any x ∈ Rn by

∥x∥ :=
√

⟨x, x⟩ .

The norm is a mapping with these
properties:

• ∀x ∈ Rn : ∥x∥ ≥ 0, (∥x∥ = 0 ⇔
x = 0),

• ∀x ∈ Rn ∀α ∈ R : ∥αx∥ =
|α|.∥x∥,

• ∀x, y ∈ Rn : ∥x + y∥ ≤ ∥x∥ +
∥y∥.

∥.∥A : Rn → R+
0 energy norm defined for any x ∈ Rn

by
∥x∥A :=

√
⟨Ax, x⟩ ,

where A ∈ Rn,n is given SPD matrix.
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∂Ω the boundary of closed set Ω ⊂ Rn.
x̄ = arg min

x∈Ω
f(x) the optimization problem defined by

cost function f : Rn → R and feasible
set Ω ⊂ Rn.
We are searching for x̄ ∈ Ω with the
smallest function value, i.e.

∀x ∈ Ω : f(x) ≥ f(x̄) .

The existence and uniqueness of the
solution depend on the properties of
f and Ω and will be discussed in the
text.

x̄ = arg min f(x) the optimization problem defined
above with Ω := Rn.

xk ∈ Rn, k = 0, 1, . . . the approximation of the solution of
given problem in the k-th iteration.
The convergent algorithm generates
the sequence {xk} such that

lim xk = x̄,

where x̄ is the solution of the problem.
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1 Fundamental Concepts

In this section, we present the basic properties of QP problems. We are interested
in the properties of the cost function (Section 1.1) and the feasible set (Section 1.2).
These properties define the solvability of the optimization problem (Section 1.3).
In our algorithms, we use different types of the projected gradients to measure the
feasibility of the approximation progress. These types are presented in Section 1.4.
The descent of quadratic function may be estimated by the norm of projected gra-
dient. We review the fundamental theory in Section 1.5.
Finally, we apply the presented theory to selected special cases of feasible set in Sec-
tion 1.6. We are mostly interested in the set types arising in applications presented
in Section 3.
The problem with additional linear equalities is presented in Section 1.7.

1.1 Quadratic function
At first, let us define a quadratic function in the most general form.

Definition 1.1.1
(Quadratic function.)
Quadratic function is a function f : Rn → R defined by a symmetric matrix
A ∈ Rn,n, a vector b ∈ Rn, and prescription

f(x) := 1
2x

TAx− bTx . (1.1)

In our applications, we always consider symmetric matrix A. Such a quadratic
function has suitable form of the gradient and Hessian matrix. But at first, let us
introduce probably the most important equality of quadratic programming. After-
wards, using this property, we present the form of the gradient, Hessian matrix, and
other suitable properties of quadratic functions.

Lemma 1.1.1
(Increment of the quadratic function value.)

Let f be a quadratic function defined by (1.1). Then for any x, d ∈ Rn and
α ∈ R

f(x+ αd) = f(x) + α⟨Ax− b, d⟩ + 1
2α

2⟨Ad, d⟩ . (1.2)
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Proof: The given equality is in fact the Taylor expansion of quadratic function. It can
be obtained using the basic properties of matrix-vector multiplication and some manipu-
lations. In the thesis, we present the form with scalar product. The quadratic function
(1.1) can be written in form

f(x) = 1
2⟨Ax, x⟩ − ⟨b, x⟩ . (1.3)

Afterwards, we can substitute and use the basic properties of scalar product. We obtain

f(x + αd) = 1
2⟨A(x + αd), x + αd⟩ − ⟨b, x + αd⟩

= 1
2⟨Ax, x⟩ + 1

2α⟨Ad, x⟩ + 1
2α⟨Ax, d⟩ + 1

2α2⟨Ad, d⟩ − ⟨b, x⟩ − α⟨b, d⟩

Since the matrix A is symmetric, we can write

∀x, y ∈ Rn : ⟨Ax, y⟩ = (Ax)T y = xTAT y = xTAy = ⟨x, Ay⟩ .

The rest of proof of (1.2) may be completed by direct computation. □

Lemma 1.1.2
(Gradient and Hessian matrix of quadratic function.)
Let f be a quadratic function defined by (1.1). Then

∇f(x) = Ax− b ,

∇2f(x) = A .
(1.4)

Proof: In (1.2), we set α := 1. Since the quadratic function is a polynomial function
of the degree 2, the obtained equation can be considered as (exact) Taylor expansion of
function f

f(x + d) = f(x) + dT∇f(x) + 1
2dT∇2f(x)d . (1.5)

From this formula, we can see the values of the gradient and the Hessian matrix (compare
(1.2) with (1.5)). □

Remark: Let us notice, the form of the gradient and the Hessian matrix (1.4) is
based on the symmetry of matrix A.

The previous lemma brings the basic idea of the problem of minimizing quadratic
function on Rn. If we are solving the unconstrained optimization problem with
quadratic cost function, we are searching for stationary points, i.e. x̄ which solves
the system of linear equations ∇f(x) = Ax− b = 0. See next lemma.
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Lemma 1.1.3
(Relation between QP and system of linear equations)
Let A ∈ Rn,n be a SPD matrix, b ∈ Rn be a vector. Then the solution x̄ ∈ Rn

of the system of linear equations

Ax = b (1.6)

is the same as the solution of optimization problem

x̄ = arg min f(x) , (1.7)

where f : Rn → R is a quadratic function defined by (1.1).

Proof: The implication (1.7) ⇒ (1.6) results from the necessary condition of minimum.
The oposite implication can be proven using (1.2) with α := 1, SPD property of matrix
A, and assumption Ax̄ − b = 0. Then for any d ∈ Rn \ {0}, we can write

f(x̄ + d) − f(x̄) = 1
2dTAd > 0

This gives for any x ̸= x̄ the inequality f(x) > f(x̄). □

Remark: The vector b in the definition of quadratic function (1.1) is usually ref-
fered as right-hand side vector. The reason is the relation between the optimization
problem and the solution of the system of linear equations. See Lemma 1.1.3.

Lemma 1.1.4
(Difference of quadratic function values)
Let f : Rn → R be a quadratic function with gradient g(x) := ∇f(x).
Then for any y, z ∈ Rn

f(y) − f(z) = ⟨g(y) + g(z), y − z⟩
2 . (1.8)

Proof: We can modify the right-hand side of the equality (1.8) into form

1
2 (⟨g(y), y − z⟩ + ⟨g(z), y − z⟩) = 1

2 (⟨Ay − b, y − z⟩ + ⟨Az − b, y − z⟩)

= 1
2 (⟨Ay, y⟩ − ⟨Ay, z⟩ − ⟨b, y⟩ + ⟨b, z⟩ +

+ ⟨Az, y⟩ − ⟨Az, z⟩ − ⟨b, y⟩ + ⟨b, z⟩)

= 1
2 (⟨Ay, y⟩ − 2 ⟨b, y⟩ + 2 ⟨b, z⟩ − ⟨Az, z⟩)

= f(y) − f(z)
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□

The properties of the Hessian matrix of the cost function is usually the most
important ingredient in optimization theory. In our problems, this matrix is SPD
or SPS. The next lemma presents the basic estimation property of scalar product
(or induced norms) with these matrices. It is used in many proofs, for instance in
the estimation of inverse Rayleigh quotient in gradient descent methods.

Lemma 1.1.5
(Basic estimations with SPD matrices.)
Let A ∈ Rn,n be SPD matrix. Then for any x ∈ Rn it holds

λmin⟨x, x⟩ ≤ ⟨Ax, x⟩ ≤ λmax⟨x, x⟩ . (1.9)

Proof: Let us consider a spectral decomposition A = UDUT and notation z := UTx.
Then for any x ∈ Rn

⟨Ax, x⟩ = xTUDUTx = zTDz =
n∑
i=1

λiz
2
i

⎧⎨⎩ ≤ λmaxzT z = λmax⟨x, x⟩,

≥ λminzT z = λmin⟨x, x⟩.

□

In optimization theory, the quality and properties of the cost function is cru-
cial. In our problems, the cost function is quadratic. It is defined, continuous and
continuously differentiable in any x ∈ Rn. We can state the following lemma.

Lemma 1.1.6
(Convex quadratic function.)
The quadratic function f is strictly convexa, i.e.

∀x, y ∈ Rn, x ̸= y,∀α ∈ (0, 1) : f(αx+ (1 − α)y) < αf(x) + (1 − α)f(y)

if and only if A is SPD.
The quadratic function f is convex, i.e.

∀x, y ∈ Rn,∀α ∈ [0, 1] : f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y)

if and only if A is SPS.
aSome authors use the term strong instead of strict. In fact, these terms are equivalent and

have the same meaning.
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Proof: The lemma can be easily proven using (1.2) and/or from the properties of
Hessian matrix A. □

There exists the relation between continuously differentiable functions and strict
convexity. See next lemma.

Lemma 1.1.7
(Equivalent property of strictly convex function.)

The continuously differentiable function f : Rn → R is strictly convex if and
only if there exists constant µ > 0 such that

∀x, y ∈ Rn : f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + µ

2 ∥y − x∥2 . (1.10)

Any such µ is reffered to a constant of strong convexity of the function f .

Proof: Based on simple manipulations, see Nesterov [53]. □

Remark: Now we are ready to state the constant of strict convexity for quadratic
function with SPD Hessian matrix. If we take equality (1.2) and set α := 1, y :=
x+ d, we obtain

f(y) = f(x) + ⟨∇f(x), y − x⟩ + 1
2∥y − x∥2

A .

Using Lemma 1.1.5 we can estimate

∥y − x∥2
A ≥ λmin∥y − x∥2.

It is easy to see that µ = λmin.
In our problems, we are trying to find the minimum of quadratic function. In

such a problem, it is always valuable to have the function values bounded from
below. In that case, we are trying to find the point in which this minimal value is
obtained.

Definition 1.1.2
(Bounded function.)
Let f be a real function defined on non-empty set Ω. Then this function is called
bounded from below on Ω, if there exists a constant M ∈ R such that

∀x ∈ Ω : f(x) ≥ M .
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Lemma 1.1.8
(Bounded quadratic function.)
The quadratic function (1.1) is bounded from below on Rn, if the Hessian matrix
A is SPS and b ∈ ImA.

Proof: This property results from the existence of minimum of quadratic function on
Rn. The solvability of such an optimization problem will be discused in Lemma 1.3.2. □

Definition 1.1.3
(Lipschitz continuous function)
A function f : Rn → R is called Lipschitz continuous if there exists constant
L > 0 such that

∀x, y ∈ Rn : |f(x) − f(y)| ≤ L∥x− y∥ . (1.11)

Any such L is reffered to as a Lipschitz constant for the function f .

1.2 Convex sets and projections
In this section, we shortly review the basic properties of convex sets. These sets
appear in our optimization problems as a feasible sets.

Definition 1.2.1
(Convex set.)
The set Ω ⊂ Rn is convex if for each pair of points within Ω, every point on the
straight line segment that joins the pair of these points is also within Ω, i.e.

∀x, y ∈ Ω ∀α ∈ [0, 1] : αx+ (1 − α)y ∈ Ω .

Later in the thesis, we will discuss the projection onto feasible set. In this case, it
is necessary to have closed set to be sure that the projection exists.

Definition 1.2.2
(Closed set.)
The set Ω is closed if for any sequence of points {xk} in Ω, all limit points of
this sequence belong to Ω.
Sometimes the feasible set has additional properties, which bring new properties

to the solvability of optimization problem.
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Definition 1.2.3
(Bounded set.)
The set Ω is bounded, if there exists a real constant M > 0 such that

∀x ∈ Ω : ∥x∥ ≤ M .

The sets, which are bounded and closed are reffered to be compact.
Now we are ready to present the properties of the projection mapping, which

assigns to each point x ∈ Rn the nearest point from the set. If the set is closed, then
this nearest point always exists and it is unique. See next lemma.

Lemma 1.2.1
(Existence and uniqueness of projection.)

Let Ω ⊂ Rn be a non-empty closed convex set. Then for every x ∈ Rn there
exists a unique projection PΩ(x) ∈ Ω defined by

PΩ(x) := arg min
y∈Ω

∥x− y∥ . (1.12)

Furthermore, PΩ(x) is the only point from Rn such that

⟨x− PΩ(x), y − PΩ(x)⟩ ≤ 0 ∀y ∈ Ω.

Proof: Since we use the projections in our algoritms very frequently, the proof is
important. The projection is an optimization problem itself, the existence and uniqueness
are based on the solvability of QP problems presented later in Section 1.3.
At first, let us notice, that the problem (1.12) can be written in the form

arg min
y∈Ω

∥x − y∥ = arg min
y∈Ω

1
2∥x − y∥2. (1.13)

Let us denote the cost function of this optimization problem by φ(y) := 1
2∥y − x∥2, φ :

Rn → R and introduce the non-empty set

Θ := Ω ∩ {x ∈ Rn : ∥y − x∥ ≤ r} ,

where r ≥ 0 is sufficiently large number.
Obviously, Θ is compact 1 and by Weierstrass theorem 1.3.2, there exists a minimum of
φ(y) on Θ. It is easy to see, that this minimum is equal to the minimum of φ(y) on Ω, i.e.

arg min
y∈Θ

φ(y) = arg min
y∈Ω

φ(y) .

1The intersection of two bounded closed convex sets is bounded closed convex set.
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Moreover, φ(y) is a quadratic function with the additional constant term

φ(y) = 1
2⟨y − x, y − x⟩ = 1

2yT Iy − yTx + 1
2xTx .

It has SPD Hessian matrix ∇2φ(y) = I, therefore φ is strictly convex function. In Section
1.3 we will show, that such a optimization problem with strictly convex cost function on
convex feasible set has unique solution, see Lemma 1.3.4.

Let us suppose by contradiction that there exist two different projections of one point
p, p̂ ∈ Ω, p = PΩ(x), p̂ = PΩ(x), p ̸= p̂ such that

⟨x − p, y − p⟩ ≤ 0 ∀y ∈ Ω,

⟨x − p̂, y − p̂⟩ ≤ 0 ∀y ∈ Ω.

In the first inequality, we choose y = p̂ and in the second y = p. Summing these two
inequalities we obtain

⟨p − p̂, p − p̂⟩ ≤ 0,

which is satisfied if and only if p = p̂. □

In [30], Dostál presented a new kind of convex sets. Such sets have additional
special property, which is the key ingredient in the theory of the decrease of quadratic
function along the projected path, see Theorem 1.5.2.

Definition 1.2.4
(Subsymmetric convex set)
A nonempty closed convex set Ω ⊂ Rn is subsymmetric if for any x ∈ Ω, y ∈ Rn,
s = x− y, and τ ∈ [0, 1]

∥PΩ(y + τs) − y∥ ≥ ∥PΩ(y − τs) − y∥ . (1.14)

x

y
y + �s

y - �s

Figure 1: The subsymmetric convex set.

The example of the subsymmetric convex set is shown in Fig. 1. It was already
proven that half-intervals, spheres, halfspaces, and their products are subsymmet-
ric. But not all convex sets are subsymmetric, see Bouchala et al. [16]. Elliptic
constraints are also subsymmetric, see Bouchala et al. [15].
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1.3 Solution
Let us present the basic conditions for the solvability of QP problems. In this section,
we briefly discuss the existence and uniqueness of the solution and also we present
the optimality conditions.

1.3.1 Kernel and Image

The solvability of unconstrained QP problems depends on the solvability of equiv-
alent system of linear equations, see Lemma 1.1.3. At first, let us remind the basic
subspaces used for the discussion of solvability of such systems.

Definition 1.3.1
(Kernel and image)
Let B ∈ Rn,m. We define

KerB := {x ∈ Rm : Bx = 0} ⊂ Rm,

ImB := {Bx ∈ Rn, x ∈ Rm} ⊂ Rn

as a kernel and an image of matrix B, respectively (or equivalently as a kernel
and image of linear mapping defined by matrix B).

The kernel consists of all vectors which are mapped by B onto null vector and the
image is the space of all right-hand side vectors, for which the system of linear equa-
tions Bx = b has solution.
The next theorem gives the basic relation between image and kernel.

Theorem 1.3.1
(Relation between image and kernel.)
Let B ∈ Rn,m. Then

KerB ⊥ ImBT ,

KerBT ⊥ ImB .

Proof: See Laub [51]. □

In this case, the orthogonality between two vector spaces U ⊥ V is defined as
orthogonality between all vectors from each space, i.e.

∀u ∈ U ∀v ∈ V : ⟨u, v⟩ = 0 .

In next, we present the basic theory about simplification of kernel and image of
Hessian matrix with special structure that arises in application of granular dynamics,
see problems (3.29) and (3.35) in Section 3.
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Lemma 1.3.1
(Kernel and image in generalized matrix congruence.)
Let A ∈ Rn,n be SPD and let B ∈ Rn,m be a rectangular matrix.

Then

KerBTAB = KerB, (1.15a)
ImBTAB = ImBT . (1.15b)

Proof: To prove (1.15a), it is necessary to show, that

∀x ∈ Rm : BTABx = 0 ⇔ Bx = 0 .

(⇐) If Bx = 0, then BTABx = BTA0 = 0.
(⇒) Let us consider x ∈ Rm such that BTABx = 0. We can write

0 = xT 0 = xTBTABx = ∥Bx∥2
A .

From the property of the norm, we can see that if ∥Bx∥A = 0, then Bx = 0.
Now we are ready to prove (1.15b).

(⇒) Let us consider y ∈ Im BTAB, i.e. there exists x ∈ Rm such that BTABx = y. If
we denote z := ABx, we can see that there exists vector z such that BT z = y. Thus
y ∈ Im BT .
(⇐) We suppose, that y ∈ Im BT , i.e. there exists x ∈ Rm such that BTx = y.
Using Theorem 1.3.1, we can state that

y ∈ Im BTAB ⇔ ∀z ∈ Ker(BTAB)T : ⟨z, y⟩ = 0 .

Now we prove that the right-hand side of this equivalency comes true.
Let us consider z ∈ Ker(BTAB)T = Ker BTAB = Ker BT . We can write

⟨z, y⟩ = ⟨z, BTx⟩ = ⟨Bz, x⟩ = ⟨0, x⟩ = 0 .

□

1.3.2 Solvability and uniqueness

In this section, we discuss the solvability of QP (1) with quadratic cost function
f : Rn → R defined in Section 1.1 and feasible set Ω ⊂ Rn defined in Section 1.2.
The solvability and uniqueness depend on the properties of both objects, i.e. the
properties of quadratic function and the properties of feasible set. We are interested
in QP with SPD or SPS Hessian matrices.
At first, we focus on the solvability of the problem without constraints, i.e. the
problem with Ω := Rn.
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Lemma 1.3.2
(QP solvability without constraints.)

If f is a quadratic function with SPS Hessian matrix A and right-hand side
vector b ∈ ImA, then the problem (1) with Ω := Rn has a solution. Moreover, if
A is SPD, then this solution is unique.

Proof: The unique solution of problem with SPD matrix is given by Lemma 1.1.3. In
this case, the solution of the optimization problem (1) is equivalent to the solution of the
linear system

Ax = b . (1.16)
Since the matrix A is nonsingular, all solutions (i.e. the only one) are given by

x̄ = A−1b .

In the case of SPS Hessian matrix, Ker A is non-trivial, so the system (1.16) is not solvable
for all right-hand side vectors b. The system is solvable if and only if b ∈ Im A. Moreover,
the solutions of this system form the set of all stationary points, so the solvability of the
system defines also the solvability of the optimization problem. Furthermore, the quadratic
function with SPS matrix is convex (the function is continuous and Hessian matrix is SPS,
see Lemma 1.1.2), therefore all stationary points are minimizers. If matrix A is SPS and
b ∈ Im A, then all stationary points are given by

x̄ := A+b + Rα, α ∈ Rr , (1.17)

where A+ is a pseudoinverse of the matrix A, R ∈ Rn,r is a full rank matrix such that
Im R = Ker A, and r ≤ n is a dimension of Ker A. Suppose, that b ∈ Im A, then there
exists y ∈ Rn such that b = Ay. Using Lemma 1.1.1, we can express

∀d ∈ Rn : f(A+b + Rα + d) − f(A+b) = ⟨∇f(A+b), Rα + d⟩ + 1
2⟨A(Rα + d), Rα + d⟩

= ⟨AA+b − b, Rα + d⟩ + 1
2⟨Ad, d⟩

= ⟨AA+Ay − Ay, Rα + d⟩ + 1
2⟨Ad, d⟩ = 1

2⟨Ad, d⟩ ≥ 0 .

Then for all d /∈ Ker A

f(x̄ + d) − f(x̄) = 1
2dTAd > 0 .

We proved that if d ∈ Ker A, then x̄ + d is still the solution of system (1.16), i.e. the
minimum of f .
Therefore, for any x ̸= x̄ it holds f(x) ≥ f(x̄). □

Remark: If b /∈ ImA, then system (1.16) has no solution, the cost function has
no stationary point. Therefore, the optimization problem (1) with Ω := Rn has no
solution.

Now let us consider nontrivial QP problems. Let Ω ̸= Rn be the feasible set.
The basic theorem of solvability of such optimization problems is Weierstrass theo-
rem.
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Theorem 1.3.2
(Weierstrass extreme value theorem.)
If f is a real-valued continuous function on a non-empty compact (i.e. bounded

and closed) domain Ω, then there exists x ∈ Ω such that f(x) ≥ f(y) for all
y ∈ Ω.
Using this theorem, we are ready to set the basic lemma of solvability of QP

problems on compact sets.

Lemma 1.3.3
(QP solvability on compact set)
If Ω ⊂ Rn is non-empty compact (i.e. bounded and closed), then QP (1) has
always solution.

Proof: Directly from Weierstrass theorem 1.3.2. □

Remark: Therefore, the QP problem (1) with SPD or SPS matrix with compact
feasible set has always solution.

In our optimization problems, the feasible set Ω is not always compact, for
example the feasible set described by bound constraints. Nevertheless, all of our
feasible sets are closed convex. In this case, the solvability is given by following
lemma.

Lemma 1.3.4
(QP solvability on closed convex set)
If f is a quadratic function with SPD Hessian matrix and Ω ⊂ Rn is closed

convex set, then the QP problem (1) has an unique solution.
If f is a quadratic function with SPS Hessian matrix A, b ∈ ImA, and Ω ⊂ Rn

is closed convex set, then the QP problem (1) has always a solution.

Proof: The quadratic function with SPD or SPS Hessian and b ∈ Im A is bounded
from below on Rn, see Lemma 1.1.8. If we consider only closed subset Ω ⊂ Rn, then this
function is still bounded from below. This function is also continuous, therefore there
exists a minimum. See Dostál [26]. □
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Lemma 1.3.5
(difference of QP solutions.)
Let x̄1, x̄2 denote two solutions of QP problem (1). Then

x̄1 − x̄2 ∈ KerA .

Proof: See Dostál [26]. □

1.3.3 Relation to variational inequalities

The QP problem can arise as a numerical solution of variational inequalities. The
next lemma presents this connection.

Lemma 1.3.6
(Variational inequality equivalency)
Let f : Rn → R be a continuously differentiable strictly convex function and let

Ω ⊂ Rn be closed convex set.
Then x̄ ∈ Ω is a solution of optimization problem

x̄ : = arg min
x∈Ω

f(x) (1.18)

if and only if
∀x ∈ Ω : ⟨∇f(x̄), x− x̄⟩ ≥ 0 . (1.19)

Proof: Let us prove implication from bottom (1.19) to top (1.18), i.e. we suppose, that
(1.19) holds. The function f is strictly convex, therefore using the property of strictly
convex functions (1.10) with x := x̄ and y := x we get ∀x ∈ Ω :

f(x) ≥ f(x̄) + ⟨∇f(x̄), x − x̄⟩ + µ
2 ∥x̄ − x∥2

the norm is non-negative

≥ f(x̄) + ⟨∇f(x̄), x − x̄⟩

use (1.19)

≥ f(x̄).

Therefore x̄ is the minimizer of f .

The second implication can be proven by contradiction. Let x̄ be a solution of the
problem (1.18). Assume (by contradiction) that there exists x̂ ∈ Ω such that

⟨∇f(x̄), x̂ − x̄⟩ < 0 . (1.20)
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Let us consider a function ϕ(α) := f(x̄ + α(x̂ − x̄)), α ∈ [0, 1]. For this function, it holds

ϕ(0) = f(x̄)

ϕ′(0) = ⟨∇f(x̄), x̂ − x̄⟩ < 0 (using (1.20))

Therefore, for small enough α we have

f(x̄ + α(x̂ − x̄)) = ϕ(α) < ϕ(0) = f(x̄).

And this is contradiction. □

Remark: Using previous lemma, we can see that the QP problem (1) with sym-
metric matrix A is equivalent to the solution of variational inequality

∀y ∈ Ω : ⟨Ax̄, y − x̄⟩ ≥ ⟨b, y − x̄⟩.

1.3.4 Lagrange function and KKT conditions

One of the most classical way how to solve optimization problem with differentiable
objects is to set up Lagrange function and Karush-Kuhn-Tucker optimality con-
ditions (KKT). Afterwards, the solution of these equations can be considered as a
problem of linear programming. In the thesis, we rather do not solve QP problem us-
ing this technique, but the KKT conditions are still important in the developement
of optimal QP solvers. They define the optimality conditions. The basic lemma
modified for QP follows.

Lemma 1.3.7
(About Lagrange function and KKT conditions.)
Let us consider the QP problem (1), where the feasible set is convex, described

by equality and inequality constraints

Ω :=

⎧⎪⎨⎪⎩x ∈ Rn :
hEi(x) = 0 i = 1, . . . ,mE

hIj(x) ≤ 0 j = 1, . . . ,mI

⎫⎪⎬⎪⎭ ̸= ∅,

where

• hEi : Rn → R are linear functions describing equality constraints,

• hIj : Rn → R are convex functions describing inequality constraints.
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Suppose x̄ solves this problem. Then there are vectors λE ∈ RmE and λI ∈
RmI , λI ≥ 0 such that x̄ solves the Lagrangian problem

x̄ := arg
x

minL(x, λE, λI) ,

where L : Rn × RmE × RmI → R is Lagrange function defined by

L(x, λE, λI) := f(x) +
mE∑
i=1

λEihEi(x) +
mI∑
j=1

λIjhIj(x) . (1.21)

The appropriate optimality conditions of this problem, so-called Karush-Kuhn-
Tucker conditions (KKT), are given by

∇xL(x, λE, λI) = ∇f(x) +
mE∑
i=1

λEi∇hEi(x) +
mI∑
j=1

λIj∇hIj(x) = 0

∇λE
L(x, λE, λI) = [hE1(x), . . . , hEmE

(x)]T = 0
∇λI

L(x, λE, λI) = [hI1(x), . . . , hImI
(x)]T ≤ 0

λI ≥ 0
λIjhIj = 0, j = 1, . . . ,mI

(1.22)

Proof: See Luenberger [52], Bertsekas [12], Nocedal and Wright [54], Boyd and Van-
denberghe [17], or Dostál [26]. □

Examples for the particular feasible sets can be found in Section 1.6. In the end
of this section, let us present a simple examples to demonstrate the solvability of
QP problem.

Example 1.3.1
Let us consider a QP problem (1) with

A :=

⎡⎢⎣ 1 0
0 0

⎤⎥⎦ , b =

⎡⎢⎣ 1
0

⎤⎥⎦ , Ω :=
{
x ∈ R2 : x1 ≤ 0 ∧ x2 ≤ 0

}
.

It is easy to check that A is SPS and the kernel and the image of A are given by

ImA = span

⎧⎪⎨⎪⎩
⎡⎢⎣ 1

0

⎤⎥⎦
⎫⎪⎬⎪⎭ , KerA = span

⎧⎪⎨⎪⎩
⎡⎢⎣ 0

1

⎤⎥⎦
⎫⎪⎬⎪⎭ ,

and b ∈ ImA. The appropriate Lagrange function L : R4 → R is given by

L(x1, x2, λ1, λ2) = f(x) + λ1x1 + λ2x2.
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In this case, the quadratic cost function can be written in simple form

f(x) = 1
2x

TAx− bTx = 1
2 [x1, x2]

⎡⎢⎣ 1 0
0 0

⎤⎥⎦
⎡⎢⎣ x1

x2

⎤⎥⎦− [1, 0]

⎡⎢⎣ x1

x2

⎤⎥⎦ = 1
2x

2
1 − x1.

Using this, it is easy to check that the KKT conditions (1.22) for this problem are
given by

∂L(x1, x2, λ1, λ2)
∂x1

= x1 − 1 + λ1 = 0 (1.23a)

∂L(x1, x2, λ1, λ2)
∂x2

= λ2 = 0 (1.23b)

∂L(x1, x2, λ1, λ2)
∂λ1

= x1 ≤ 0 (1.23c)

∂L(x1, x2, λ1, λ2)
∂λ2

= x2 ≤ 0 (1.23d)

λ1 ≥ 0 (1.23e)
λ2 ≥ 0 (1.23f)
λ1x1 = 0 (1.23g)
λ2x2 = 0 (1.23h)

We can take equation (1.23a) and express

x1 = 1 − λ1 (1.24)

and afterwards, we substitute this into condition (1.23g). We obtain

λ1(1 − λ1) = 0

This quadratic equation has two roots λ̄1 = 1, λ̂1 = 0. which satisfy condition
(1.23e). Using (1.24) and λ̄1 = 1, we obtain x̄1 = 0, which satisfies also condition
(1.23c). If we use λ̂1 = 0 in (1.24), we obtain x̂1 = 1, which violates condition
(1.23c). Therefore, there exists only one solution x̄1 = 0.
Since from (1.23d) and (1.23f) we get λ̄2 = 0, the conditions (1.23d) and (1.23h) are
satisfied for any x̄2 ≥ 0.
Therefore, all solutions of optimization problem is given by⎡⎢⎣ x̄1

x̄2

⎤⎥⎦ =

⎡⎢⎣ 0
0

⎤⎥⎦+

⎡⎢⎣ 0
t

⎤⎥⎦ , t ≥ 0,
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or equivalently ⎡⎢⎣ x̄1

x̄2

⎤⎥⎦ ∈

⎧⎪⎨⎪⎩
⎡⎢⎣ 0

0

⎤⎥⎦+ d, d ∈ KerA

⎫⎪⎬⎪⎭ ∩ Ω.

Example 1.3.2
Let us consider QP with similar data as in Example 1.3.1, but in this case we consider
right-hand side vector

b =

⎡⎢⎣ 1
1

⎤⎥⎦ .
It is easy to check that b /∈ ImA. In this case, the Lagrange function is given by

L(x1, x2, λ1, λ2) = 1
2x

2
1 − x1 − x2 + λ1x1 + λ2x2.

The KKT conditions are given by

∂L(x1, x2, λ1, λ2)
∂x1

= x1 − 1 + λ1 = 0 (1.25a)

∂L(x1, x2, λ1, λ2)
∂x2

= −1 + λ2 = 0 (1.25b)

with the rest of conditions same as in previous example, i.e. (1.23c) - (1.23h).
The only λ2, which satisfies condition (1.25b) is given by λ̄2 = 1. From (1.23h) we
get x̄2 = 0. The first component of the solution x̄1 = 0 can be obtained using the
same metology as in Example 1.3.1. Therefore, the problem has unique solution
[x̄1, x̄2]T = 0.

Example 1.3.3
Let us consider QP with similar data as in Example 1.3.2. In this case we consider
right-hand side vector

b =

⎡⎢⎣ 1
−1

⎤⎥⎦ .
It is easy to check that b /∈ ImA. The KKT conditions are given by

∂L(x1, x2, λ1, λ2)
∂x1

= x1 − 1 + λ1 = 0 (1.26a)

∂L(x1, x2, λ1, λ2)
∂x2

= 1 + λ2 = 0 (1.26b)
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with the rest of conditions same as in previous examples, i.e. (1.23c) - (1.23h).
From (1.26b), we get λ̂2 = −1. Obviously, this solution violates condition (1.23f).
Therefore, the problem with this right-hand side vector has not solution.

1.4 Gradients
In this section, we define several types of projected gradients. The norm of these
gradients can be used as a measurement of the solution accuracy.

1.4.1 Projected gradient

At first, we denote
N := {1, . . . , n},
M := {1, . . . ,m}

the set of indices of unknown vector x ∈ Rn and the set of indices of constraints,
respectively. We consider a feasible separable set Ω ⊂ Rn composed from the sets of
smaller dimension Ωj, j ∈ M

Ω := Ω1 × · · · × Ωm, (1.27)

where each Ωj ⊂ R|Ij | is described by one constraint function hj : R|Ij | → R

Ωj := {x ∈ R|Ij | : hj(x) ≤ 0}. (1.28)

Here Ij ⊂ N is the index set with the indexes of components of x constrained by
function hj. The number of constrained components is denoted by |Ij|, i.e. the
dimension of the set Ij. Furthermore, we consider a separable feasible set, thus

∀i, j ∈ M, i ̸= j : Ii ∩ Ij = ∅.

If all components of x are not constrained, we denote by Iuncon the index set with
unconstrained indices. Afterwards, we can define the constraint function which is
always satisfied

huncon(x) := −∞, huncon : R|Iuncon| → R,

Ωuncon := {x ∈ R|Iuncon| : huncon(x) ≤ 0}.

From this point of view, all components of x are constrained and we can write

I1 ∪ · · · ∪ Im = N ,

|I1| + · · · + |Im| = |N | = n.
(1.29)
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For every x ∈ Rn, we can decompose the set of all constraints indexes into free and
active set defined by

F(x) := {j ∈ M : hj(xIj
) ̸= 0} ,

A(x) := {j ∈ M : hj(xIj
) = 0} .

(1.30)

Using this decomposition, we are able to define free gradient φ(x) ∈ R and chopped
gradient with components given by

φIj
(x) :=

⎧⎪⎨⎪⎩ gIj
(x) if j ∈ F(x),

0 if j ∈ A(x),

βIj
(x) :=

⎧⎪⎨⎪⎩ 0 if j ∈ F(x),
gIj

(x) − min{nTj (xIj
)gIj

(x), 0}nj(xIj
) if j ∈ A(x),

(1.31)
where g(x) := ∇f(x) = Ax− b ∈ Rn denotes the gradient of cost quadratic function
and nj(x) ∈ R|Ij | is an unit outward normal to Ωj defined for any x ∈ ∂Ωj by

nj(x) := 1
∥∇hj(x)∥∇hj(x). (1.32)

Afterwards, we define the projected gradient as a sum of free and chopped gradient

gP (x) := φ(x) + β(x) .

Lemma 1.4.1
(About projected gradient and solution.)
Vector x̄ is a solution of optimization problem (1) if and only if

gP (x̄) = 0 .

Proof: Can be proven directly from KKT conditions (1.22). See Bertsekas [12] and
Dostál [26]. □

The previous lemma shows that the norm of the projected gradient can be con-
sidered as a natural measurement of the KKT violation, i.e. natural measurement
of the optimality.
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1.4.2 Reduced gradient

Other methods (mostly not active-set methods) use more general criterium of opti-
mality. This condition can be also found in the solution of differential inequalities.
We define reduced gradient by prescription

g̃α(x) := 1
α

(x− PΩ(x− α∇f(x))) . (1.33)

In our algorithms, we usually use α ∈ (0, 1/λAmax⟩. This coefficient appears in
projected gradient path theory given by Schöberl and Dostál [36].
The easiest way how to understand the meaning of reduced gradient is to take
a look into projected gradient descend methods, i.e. the methods with iteration
prescription

xk+1 := PΩ(xk − αk∇f(xk)) ,
which differs from classical gradient descend methods (such as Steepest Descent
method) only with additional projection onto feasible set. Using this projection we
are sure, that every iteration lies in the feasible set.
Then reduced gradient reflects the distance between old iteration and new iteration
scaled by the inverse value of the step-size.

Lemma 1.4.2
(About reduced gradient and solution.)
Vector x̄ is a solution of optimization problem (1) if and only if

g̃α(x̄) = 0 .

Proof: The optimization problem can be rewritten using Lemma 1.3.6 to

find x̄ such that ∀x ∈ Ω : ⟨∇f(x̄), x − x̄⟩ ≥ 0.

This equation can be easily transformed to form

find x̄ such that ∀x ∈ Ω : ⟨x̄ − α∇f(x̄) − x̄, x − x̄⟩ ≤ 0,

where we choose α > 0. Afterwards, using Lemma 1.3.6 and the definition of projection
in Lemma 1.2.1 we obtain equivalent condition

x̄ = PΩ(x̄ − α∇f(x̄)).

The rest of the proof is straightforward. □

Remark: The previous lemma shows that the norm of the reduced gradient can
be also considered as a natural measurement of the KKT violation, i.e. natural
measurement of the optimality.
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1.4.3 Reduced projected gradient

The projected and reduced gradient can be combined together into new type of gra-
dient. This new type uses advantages of both, i.e. the decomposition of stopping
criterion into free and active part and non-linear behaviour of constraints described
by projections. The reduced projected gradient was succesfully used for solving the
QP problems on convex sets with strong curvature, see Bouchala, et al. [15].

Example 1.4.1
Let us consider a problem with elliptic constraint. The projected and reduced gra-
dient have each its own difficulty when it is used as a stopping criterion, see Fig.
2. Even if the size of the absolute error ∥xk − x̄∥ is small, the size of used gradient
can be large. These difficulties can be eliminated using the combination of these
gradient types.

Figure 2: Example - reduced gradient (left) and projected gradient (right); even if
the absolute error is small, the norm of the projected or reduced gradient could be
large.

At first, we define reduced chopped gradient by prescription

β̃αIj
(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if j ∈ F(x) ,
gIj

(x) if j ∈ A(x) and nTj (xIj
)gIj

(x) > 0 ,
1
α
(xIj

− PΩj
(xIj

− αgIj
(x))) if j ∈ A(x) and nTj (xIj

)gIj
(x) ≤ 0
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and afterwards, the reduced projected gradient is given by

g̃Pα (x) := φ(x) + β̃α(x) .

Lemma 1.4.3
(About reduced projected gradient and solution.)
Vector x̄ is a solution of optimization problem (1) if and only if

g̃Pα (x̄) = 0 .

Proof: The property is a combination of Lemma 1.4.1 and 1.4.2. See Bouchala, et al.
[15]. □

1.4.4 Error measurement

The next lemma brings together relations between the norm of absolute error and
norm of gradient types defined above.

Lemma 1.4.4
(Absolute error and gradient types.)
Let x̄ be the solution of (1). Then for any x ∈ Ω it holds

∥x− x̄∥2
A ≤ 2(f(x) − f(x̄)) ≤ ∥gP (x)∥2

A−1 ≤ 1
λAmin

∥gP (x)∥2 , (1.34a)

∥x− x̄∥ ≤ ν(α)∥g̃α(x)∥ , (1.34b)
∥x− x̄∥ ≤ ν(α)∥g̃Pα (x)∥ , (1.34c)

where

ν(α) :=

⎧⎨⎩1/λAmin for 0 < α ≤ 2/(λAmin + λAmax) ,
α/
(
2 − αλAmax

)
for 2/(λAmin + λAmax) ≤ α < 2/λAmax .

Proof: Proof of (1.34a) can be found in Dostál and Kozubek [30], Lemma 2.
For (1.34b) and (1.34c) see Bouchala, et al. [15]. □

Next lemma gives us relations between the gradient types.
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Lemma 1.4.5
(Relations between gradient types.)
For x ∈ Ω it holds

∥g̃α∥2 ≤ gT g̃α ≤ gTgP = ∥gP∥2, (1.35a)
∥g̃α∥ ≤ ∥g̃Pα ∥ ≤ ∥gP∥. (1.35b)

Moreover, there exists a constant C ≥ 1 such that for each x ∈ Ω and α ∈
(0, 2/λAmax)

∥g̃Pα (x)∥ ≤ ∥gP (x)∥ ≤ C∥g̃Pα (x)∥ .

Proof: See Dostál and Kozubek [30], Bouchala, et al. [15]. □

1.5 Descent along the projected gradient path
In Dostál and Schöberl [36], authors give an estimation of descent of quadratic
function along the projected path. They show, that if we use constant step-size in
projected gradient descent method, we obtain a decrease of the cost function. See
next theorem.

Theorem 1.5.1
(Constant step-length.)

Let Ω be a closed convex set, let x̄ denote the unique solution of (1), and
ᾱ ∈ (0, ∥A∥−1).
Then for all x ∈ Ω

f (PΩ (x− ᾱg(x))) − f(x̄) ≤ ρ (f(x) − f(x̄)) ,

where
ρ = (1 − ᾱλmin(A)) < 1 .

Proof: See Dostál and Schöberl [36]. □

Furthermore, in next paper [30], Dostál and Kozubek show, that this interval
can be extended, if the feasible set has special property. Such sets were called
subsymmetric. It has been already proven that half-intervals, spheres, halfspaces,
and their products are subsymmetric, but not all convex sets are subsymmetric, see
Bouchala, et al. [16]. Elliptic constraints are subsymmetric, see Bouchala, et al.
[15].
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Theorem 1.5.2
(Constant step-length on subsymmetric set.)
Let Ω be a closed convex subsymmetric set, let x̄ denote the unique solution of

(1), µ = 2∥A∥−1, and ᾱ ∈ (0, µ).
Then for all x ∈ Ω

f (PΩ (x− ᾱg(x))) − f(x̄) ≤ η(ᾱ) (f(x) − f(x̄)) ,

where
η(α) := max {1 − αλmin(A), 1 − (µ− α)λmin(A)} .

Proof: See Dostál and Kozubek [30]. □

1.6 Special cases in applications
Now we are ready to present KKT for QP on particular types of sets.

1.6.1 General separable inequality constraints

We have already presented a way how to define separable inequality constraints,
mostly in the case of the combination of different types of constraints for different
components of x, in Section 1.4.1. Generally, each constraint function hj defines the
part of the total feasible set Ωj, j = 1, . . . ,m, see (1.28). The constraint function
constraints the components of the unknown vector x. These components are denoted
by Ij, see (1.29). Moreover, we suppose that the constraint functions hj : R|Ij | → R
are convex and differentiable, so we are able to compute unit outward normal in
every boundary point x ∈ ∂Ωj, see (1.32).

1.6.2 Bound constraints

The feasible set defined by bound constraints is the closed convex set defined by
formula

Ω := {x ∈ Rn : x ≥ l} ,
where l ∈ Rn is the vector of lower bound components. To include the possibility
that not all the components are constrained, we admit li = −∞. In this case, we
can use the index set to define constrained components, but if we consider problems
with only bound constraints, we obtain only complicated notations. Since this, we
define a feasible set using the whole vector of bound constraints.
The components of projection PΩ(x) have for any x ∈ Rn simple form

[PΩ(x)]i := max{li, xi}, i = 1, . . . , n .



47

We set in notations (1.27), (1.28), (1.29), (1.32)

Ij := {j}, j = 1, . . . , n,
hj(x) := lj − x, hj : R → R,

nj(x) := −1

and KKT conditions (1.22) have form

Ax− b− λ = 0,
l − x ≤ 0,

λ ≥ 0,
∀i = 1, . . . , n : λi(li − xi) = 0.

These conditions can be reformulated into the form (x̄ ∈ Ω is a solution if and only
if)

Ax̄− b ≥ 0 and (Ax̄− b)T (l − x̄) = 0 ,

see Dostál [26].

Bound constraints appear, for example, in contact mechanic problems as an
enforcement of non-penetration condition, see Section 3.2.

1.6.3 Box constraints

If we add to the set described by lower bounds also upper bounds, we obtain a set
described by box constraints

Ω := {x ∈ Rn : l ≤ x ≤ u⟩ ,

where u ∈ Rn : u ≥ l is a vector of upper bounds. Similarly, to include the possibility
that not all the components are constrained by upper bound, we admit ui = ∞.
The components of the projection are given by

[PΩ(x)]i := min{max{li, xi}, ui}, i = 1, . . . , n .

The most important difference between bound constraints and box constraints is
non-separability of the box constraints. In notations (1.27), (1.28), (1.29), (1.32),
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we can see two sets of constraint functions

Ij := {j}, j = 1, . . . , n,
hlj(x) := lj − x, hlj : R → R,

huj (x) := x− uj, huj : R → R,

nlj(x) := −1,
nuj (x) := 1.

In this case, the KKT conditions (1.22) have form

Ax− b− λl + λu = 0,
l − x ≤ 0,
x− u ≤ 0,
λl, λu ≥ 0,

∀i = 1, . . . , n : λli(li − xi) = 0,
λui (xi − ui) = 0.

Since l < u, we can decompose the active set into two disjont subsets

Al(x) := {j ∈ N : hlj(xIj
) = 0} ,

Au(x) := {j ∈ N : huj (xIj
) = 0}

and then define free and active set by

F(x) := {j ∈ N : hlj(xIj
) < 0 ∧ huj (xIj

) < 0} ,
A(x) := Al(x) ∪ Au(x) .

Box constraints appear, for example, in 2D contact problems with friction.

1.6.4 Spherical constraints

Spherical constraints define the relation between pairs of unknowns

Ωj := {[x1, x2] ∈ R2 : x2
1 + x2

2 ≤ r2
j}, j = 1, . . . ,m .
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The vector of radii is represented by r ∈ Rm, rj > 0.
We set in notations (1.28), (1.29), (1.32)

N := {1, . . . ,m},
Ij := {2j − 1, 2j}, j = 1, . . . ,m,

hj(x) := x2
1 + x2

2 − r2
j , hj : R2 → R,

nj(x) := (1/∥x∥)x

and KKT conditions (1.22) have form

Ax− b+ 2λ̂x = 0,
∥xIj

∥2 − r2
j ≤ 0,
λ ≥ 0,

∀j = 1, . . . ,m : λj(∥xIj
∥2 − r2

j ) = 0,

where λ̂ ∈ Rn,n is a diagonal matrix with Lagrange multipliers defined by

λ̂kl :=

⎧⎪⎨⎪⎩ λj if k = l ∈ Ij,
0 elsewhere.

In this case, the projection onto the boudary of circle with radius rj is realized by
simple formula

PΩj(xIj
) := rj

∥xIj
∥
xIj

.

Spherical constraints are important in 3D contact problems with friction, see
Section 3.2.

1.6.5 Elliptic constraints

These constraints are the generalization of spherical constraints and have the form

Ωj := {x ∈ R2 : xTBjx ≤ 1}, j = 1, . . . ,m .

In fact, the boundary of ellipse can be represented by quadratic function defined by
SPD matrix Bj ∈ R2,2.
The projection is non-trivial and can be considered as optimization problem itself,
see Haslinger et al. [44].
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For any x ∈ ∂Ωj, the outward unit normal is given by

nj := 1
∥Bjx∥

Bjx .

Elliptic constraints are important in 3D contact problems with anisotropic friction,
see Bouchala, et al. [15].

1.6.6 Conical constraints

The conical constraint represents the cone in 3 dimensions

Ωj := {x ∈ R3 : x2
2 + x2

3 ≤ µ2
jx

2
1 ∧ x1 ≥ 0}, j = 1, . . . ,m

or equivalently

Ωj := {x ∈ R3 :
√
x2

2 + x2
3 ≤ µjx1}, j = 1, . . . ,m .

The vector µ ∈ Rm, µj ∈ [0, 1] represents the properties of cones.
The problem of projection can be solved analytically (see Heyn [13])

PΩj
(x) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x if µjx1 −

√
x2

2 + x2
3 ≥ 0 ,

0 if − x1
µj

−
√
x2

2 + x2
3 ≥ 0 ,

x1+µj

√
x2

2+x2
3

µ2
j +1

[
1, x2

µj√
x2

2+x2
3
, x3

µj√
x2

2+x2
3

]T
elsewhere

and outward unit normal is given by

nj(x) := n̂j(x)
∥n̂j(x)∥ , n̂j(x) :=

⎧⎪⎨⎪⎩
[−1, 0, 0]T if x = 0,[
−µj, x2√

x2
2+x2

3
, x3√

x2
2+x2

3
,
]

elsewhere.

Conical constraints appear in granular dynamics problems with friction, see Section
3.3.

1.7 Additional linear equality constraints
In this section, we consider QP problems with additional linear equality constraints,
i.e.

x̄ := arg min
x∈Ω

f(x) , (1.36)

where the feasible set Ω ⊂ Rn is described by the combination of the feasible set
presented Section 1.2 and additional linear equality constraints

Ω := ΩI ∩ ΩE,

ΩE := {x ∈ Rn : Bx = 0}.
(1.37)
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We require neither that B ∈ Rm,n is a full row rank matrix nor m ≤ n, but we
assume that KerB is non-trivial vector space to guarantee that ΩE is not empty.
We also assume that B is sparse or m ≪ n. Let us point out that confining ourselves
to the homogeneous equality constraints does not mean any loss of generality, as we
can use a simple transform to reduce any non-homogeneous equality constraints to
our case.
However, we start our exposition with the problem to find the minimizer of the
quadratic function f(x) subject to linear equality constraints, that is ΩI := Rn.
The appropriate Lagrange function (see Section 1.3) has form

L(x, λ) = f(x) + λTBx, L : Rn × Rm → R (1.38)

and KKT conditions are given by

∇xL(x, λ) = Ax− b+BTλ = 0,
∇λL(x, λ) = Bx = 0.

(1.39)

The saddle point system of linear equations (1.39) is usually written in form⎡⎢⎣ A BT

B 0

⎤⎥⎦
⎡⎢⎣ x

λ

⎤⎥⎦ =

⎡⎢⎣ b

0

⎤⎥⎦
and it can be solved simply directly as a system of linear equations with symmetric
matrix. Furthermore, the preconditioning techniques can be also used, see Benzi et
al. [11].
Moreover, if A is SPD and B is a full row rank matrix, the system (1.39) can be
reduced eliminating primal variables x to the form of Schur complement system

BA−1BTλ = BA−1b,

see e.g. Dostál [26]. Since the matrix of this system is SPD, we can write using
Lemma 1.1.3 the problem in equivalent form

λ̄ := arg min
λ∈Rm

1
2λ

TBA−1BTλ− λTBA−1b. (1.40)

The technique of eliminating the primal variables to the problem with dual variables
is called dualization and the problem (1.40) is called dual problem.

Another way how to enforce the equality constraints is to use the penalty method.
It is well known (e.g. Bertsekas [12], Nocedal and Wright [54], Boyd and Vanden-
berghe [17], or Dostál [26]) that the problem with equality constrained problem can
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be aproximated by the solution of unconstrained problem with additional penalty
term in the cost function

x̄ := arg min
x∈ΩE

f(x) ≈ x̂ := arg min
x∈Rn

f(x) + ρ

2∥Bx∥2,

where ρ > 0 is sufficiently large penalty parameter. The relation between the
solution of the constrained problem and unconstrained problem with penalty term
is given by the next theorem presented by Dostál [26]. The theorem gives the
estimation of the feasibility error of the solution of unconstrained penalized function.

Theorem 1.7.1
(About feasibility error of penalized function)
Let A ∈ Rn,n be SPD matrix, B ∈ Rm,n be nonzero matrix, and b ∈ Rn. We
assume that B is not necessarily a full rank matrix. Let ε ≥ 0 and ρ > 0.
Let x̂ is an approximate solution of unconstrained optimization problem

min
x∈Rn

fρ(x) fρ(x) := f(x) + ρ

2∥Bx∥2 (1.41)

such that the necessary optimality condition ∇xfρ(x) = 0 is satisfied approxi-
mately with respect to relative precision ε∥b∥, i.e.

∥∇xfρ(x)∥ ≤ ε∥b∥,

then
∥Bx∥ ≤ 1 + ε√

λAminρ
∥b∥.

Proof: See Dostál [26] and Dostál and Horák [28]. □

Let us take a better look into the necessary optimality condition of the solution
of penalized problem (1.41)

∇xfρ(x) = Ax− b+ ρBTBx = 0.

This expression can be modified into

(A+ ρBTB)x− b = 0.

The next theorem presents the properties of the system matrix in this equation.
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Theorem 1.7.2
(About condition number of penalized matrix)
Let A ∈ Rn×n be a symmetric positive semidefinite matrix, let B ∈ Rm×n, ρ > 0,

and let KerA ∩ KerB = {0}. Then matrix

Aρ = A+ ρBTB

is symmetric positive definite and

κ(Aρ) ≥ κ̂(A) . (1.42)

Moreover,

• if κ̂(BTB) ≤ κ̂(A) and

ρ ∈

⎡⎣ λ̂Amin

λ̂B
TB

min
,
λAmax
λBTB

max

⎤⎦
then κ(Aρ) = κ̂(A),

• if κ̂(BTB) > κ̂(A) then ∀ρ > 0 : κ(Aρ) > κ̂(A).

Proof: Dostál proved the first part of the theorem in [26], Lemma 1.2. This proof
follows.
If x ∈ Rn \ {0} and Ker A ∩ Ker B = {0}, then either Ax ̸= 0 or Bx ̸= 0. Since Ax ̸= 0 is
equivalent to A

1
2 x ̸= 0, we get for ρ > 0

⟨Aρx, x⟩ = ⟨(A + ρBTB)x, x⟩ = ∥A
1
2 x∥2 + ρ∥Bx∥2 > 0 .

Thus Aρ is positive definite.

Let us consider a spectral decomposition of symmetric matrix A in form

A = UT
AΣAUA =

[
UT

ImUT
Ker

] ⎡⎣ Σ̂A

0

⎤⎦⎡⎣ UIm

UKer

⎤⎦ , (1.43)

where Im UT
Im = Im A, Im UT

Ker = Ker A, r = rank A, and Σ̂A ∈ Rr,r is a diagonal matrix
with positive eigenvalues of matrix A.
Matrix BTB ∈ Rn,n is also symmetric positive semidefite. If we denote M = UKerB

TBUKer ∈
Rn−r×n−r, we can write

BTB = UT
KerMUKer =

[
UT

ImUT
Ker

] ⎡⎣ 0

M

⎤⎦⎡⎣ UIm

UKer

⎤⎦ . (1.44)
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Furthermore, we can also consider a spectral decomposition of symmetric matrix M in
form M = V T Σ̂MV . Using this, (1.43), and (1.44) we obtain

Aρ =
[
UT

ImUT
Ker

] ⎡⎣ Σ̂A

ρM

⎤⎦⎡⎣ UIm

UKer

⎤⎦
=

[
UT

Im UT
KerV

T
] ⎡⎣ Σ̂A

ρΣ̂M

⎤⎦⎡⎣ UIm

V UKer

⎤⎦ = UT

⎡⎣ Σ̂A

ρΣ̂M

⎤⎦U .

Let us remark that matrix U is orthogonal, so eigenvalues of SPD matrix Aρ are given by

σ(Aρ) = σ(Σ̂A) ∪ σ(ρΣ̂M ) ⊂ R+ . (1.45)

Let us denote the largest eigenvalue of symmetric positive definite matrix M by λMmax and
smallest eigenvalue by λMmin. For symmetric positive semidefinite matrix A we can denote
the smallest non-zero eigenvalue by λ̂Amin. Then the condition number and the regular
condition number are defined by

κ(M) = λMmax
λMmin

, κ̂(A) = λAmax

λ̂Amin
.

Using the definitions and the relations between the objects one can directly proof that

κ(Σ̂M ) = κ(M) = κ̂(BTB) = κ(ρM), κ(Σ̂A) = κ̂(A).

Now, we are interested in the relation between κ̂(A) and κ(Aρ). Obviously, the ratio
between the largest and the smallest components of set σ(Σ̂A) = σ(A) \ {0} in (1.45) can
not be reduced by the union with σ(ρΣ̂M ) = σ(ρBTB) \ {0}. This implies

κ(Aρ) ≥ κ̂(A).

Now we focus on the situation when κ(Aρ) = κ̂(A). In this case, the eigenvalues can be
ordered

λ̂Amin ≤ ρλMmin ≤ ρλMmax ≤ λAmax. (1.46)

Such an inequalities are fulfilled if and only if

λ̂Amin
λMmin

≤ ρ ≤ λAmax
λMmax

and κ(M) ≤ κ̂(A). (1.47)

Furthermore, if κ(M) > κ̂(A) or equivalently

λ̂Amin
λAmax

>
λMmin
λMmax

then there is not such a ρ > 0 that inequalities (1.46) are fulfilled. □
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The similar technique can be used also for the optimization problem constrained
by the combination of linear equalities and inequalities

x̄ := arg min
x∈ΩI∩ΩE

f(x) ≈ x̂ := arg min
x∈ΩI

1
2x

T (A+ ρBTB)x− bTx. (1.48)

In this case, the necessary condition of the optimality of the problem constrained
only by inequalities is given by the gradient types presented in Section 1.4.

Combining the Lagrangian for equality constrained QP problem (1.38) and penalty
method (1.48), we obtain so-called Augumented Lagrangian

L(x, λE, ρ) = 1
2x

T (A+ ρBTB)x− (b−BTλ)Tx. (1.49)
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2 Algorithms

In this section, we present the algorithms, which can be used to solve QP problem
on selected feasible set presented in Section 1.6.

• Spectral Projected Gradient method (SPG, SPG-QP)
This method was firstly presented by Martinéz et al. [13]. In the thesis, we
shortly review the algorithm. The SPG method combines Barzilai-Borwein
(BB) steps with projections and additional Grippo-Lampariello-Lucidi (GLL)
line-search step to enforce the convergence based on the generalized Armijo
condition. Here, we present our own modification of SPG for QP problem.
The presented theory shows that if the cost function is quadratic, we can omit
the iterative line-search. The appropriate step-size is given by simple formula.

• Projected Barzilai-Borwein method (PBBf)
PBBf is a simple modification of SPG. We try to omit the line-search step and
instead of using the generalized Armijo condition to enforce the convergence,
we present an alternative descend control. This backtracing technique is based
on the theory of projected gradient path presented in Section 1.5.

• Accelerated Projected Gradient Descent method (APGD)
Nesterov [53] presented an algorithm for solving the optimization problems
with Lipschitz continuous convex cost function on closed convex feasible sets.
We shortly review the algorithm and present our own modification for solving
QP problems. The modification is based on the properties of the quadratic
cost function presented in Section 1.1.

• Active-set methods (MPRGP, MPRGPS, MPGP, MwPGP, MPGP-BB)
Dostál [26] presented optimal active-set methods for solving QP problems. In
this text, we shortly review the algorithms and present the new modification
for the solution of QP with SPS Hessian. We also present the modification for
separable constraints with strong curvature or modification with the projected
Barzilai-Borwein method. Such steps speed up the convergence in final stage
of the solution.

• Augmented Lagrangian method (SMALBE-M)
We shortly review the algorithm for solving the problems with additional linear
equality constraints. This modification of the classical Augmented Lagrangian
algorithm by Hestenes and Stiefel [46] was presented by Dostál [26]. The
idea is a combination of algorithms for solving the problem with inequalities
and Augmented Lagrangian method with adaptive precision control of inner
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optimization problem solution to enforce equality constraints. Dostál usually
uses an active-set methods as an inner solver. In the thesis, we extend this
study by tests with our alternative algorithms mentioned above.

2.1 Spectral projected gradient method (SPG)
At first, we shortly review the Barzilai-Borwein method (BB, see Barzilai and Bor-
wein [10]). This algorithm will be extended by projections of approximations to
feasible set. Furthermore, we use the Grippo-Lampariello-Lucidi line-search tech-
nique (GLL) to enforce the convergence. Using this combination, we obtain the
Spectral projected gradient method (SPG, see [13]).

2.1.1 Barzilai-Borwein method

Gradient descent methods for solving unconstrained quadratic programming prob-
lem, i.e. (1) with Ω = Rn, are based on the construction of a sequence of the solution
aproximations using recursive formula

xk+1 = xk − αkg
k, k = 0, 1, . . . (2.1)

with the step size αk ∈ R+ and the vector of the steepest descent −gk := −∇f(xk).
The most popular gradient descent method is the Steepest Descent method (SD,
firstly presented by Cauchy [19]). This method uses the step-length, which minimizes
function f(xk+1) using locally optimal step-size

xk+1 = arg min
α∈R

{xk − α∇f(xk)}, ⇒ αk = ⟨gk, gk⟩
⟨Agk, gk⟩

.

The step-size of BB method is based on the different idea. To briefly review the
relation of the BB method for the solution of unconstrained problems to the Newton
method for solving a scalar non-linear equation g(x) = 0, let us follow Raydan [61]
and replace the derivative g′(xk) in the Newton method by its secant approximation
to get

xk+1 = xk − 1
g′(xk)g(x

k) ≈ xk − xk − xk−1

g(xk) − g(xk−1)g(x
k) . (2.2)

Denoting gk = g(xk) = f ′(xk) = ∇f(xk) and

αk = xk − xk−1

gk − gk−1 , (2.3)

we can see that the secant method (2.2) can be considered as a gradient descend
method (2.1). If g(x) : Rn → Rn, then we cannot evaluate αk by (2.3), but we can
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assemble the secant equation

1
αk

(xk − xk−1) = gk − gk−1 (2.4)

and solve it in the least-squares sense

αk = 1/ arg min
β∈R

∥(xk − xk−1)β − (gk − gk−1)∥2 .

After denoting
sk = xk − xk−1 , gk − gk−1 = Ask ,

and some simplifications, we get the strictly convex minimizing problem

αk = 1/ arg min
β∈R

(
⟨sk, sk⟩β2 − 2⟨Ask, sk⟩β + ⟨Ask, Ask⟩

)
with the solution

αk = ⟨sk, sk⟩
⟨Ask, sk⟩

. (2.5)

This is the step-size of the BB method. This observation was firstly presented by
Raydan [61]. The proof of convergence with estimations was presented by Dai and
Liao [22].

2.1.2 Grippo-Lampariello-Lucidi line-search technique

In this section, we shortly review the method for finding the step-size βk ∈ R+ in
the second part of one SPG step given by Grippo, Lampariello, and Lucidi [42]. We
consider more general descent method in the form

xk+1 = xk + βkd
k , (2.6)

where dk ∈ Rn is descent direction, i.e. we require

⟨dk, gk⟩ < 0 . (2.7)

The problem is to find step-size βk ∈ Rn to fulfill appropriate descent criterium to
obtain the convergence of the algorithm to minimal value.
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Figure 3: Feasible step-size in Armijo rule.

Definition 2.1.1
(Armijo condition)
Let f : Rn → R be a cost function of minimizing problem, let x, d ∈ Rn be
an approximation of the solution and the descent direction, respectively, and let
γ ∈ (0, 1) be a constant. We refer the inequality

f(x+ αd) ≤ f(x) + γα⟨g, d⟩ (2.8)

as Armijo condition.
Remark: If we denote the left side of inequality (2.8) as l(α) : R → R and the
right side as p(α) : R → R, then p(α) is affine function, see Fig. 3. We say that α
satisfies Armijo condition for given x, d, if (2.8) holds.

Algorithm 2 is the GLL algorithm to find βk which satisfied the modification
of (2.8). This modification is called generalized Armijo condition. Due to this
condition, the algorithm is convergent. See theorem below.

Theorem 2.1.1
(About generalized Armijo condition)
Let {xk} ⊂ Rn be a sequence generated by prescription

xk+1 = xk + βkd
k, dk ∈ Rn \ {0} .

Let β > 0, σ ∈ (0, 1), γ ∈ (0, 1) and M be a nonnegative integer.
Assume that
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1. the set
Ω0 := {x ∈ Rn : f(x) ≤ f(x0)}

is compact.

2. there exist constants c1, c2 > 0 such that

⟨gk, dk⟩ ≤ −c1∥gk∥2 ,

∥dk∥ ≤ c2∥gk∥ .

3. βk = σhkβ, where hk is the first nonnegative integer h for which a special
variant of Armijo-condition holds

f(xk + σhβdk) ≤ max
0≤j≤m(k)

{f(xk−j)} + γσhβ⟨gk, dk⟩ ,

where

m(0) = 0 ,

m(k) : 0 ≤ m(k) ≤ min{m(k − 1) + 1,M}, k ≥ 1 .

then

1. the sequence {xk} remains in Ω0 and every limit point x̄ satisfies ∇f(x̄) =
0,

2. no limit point of {xk} is a local maximum of f ,

3. if the number of the stationary points of f in Ω0 is finite, the sequence {xk}
converges.

Proof: See Grippo, Lampariello, and Lucidi [42]. □

2.1.3 Spectral projected gradient method

The Spectral Projected Gradient method (SPG) is based on the combination of the
projected BB method with the GLL line-search technique. In Birgin, Martinéz, and
Raydan [14], it can be found Algorithm 3.

From the schema, we can see that every iteration consists of two steps. At first
step, we use the projected gradient method using the BB step-length computed
in previous iteration. Using GLL we find a new approximation between obtained
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Algorithm 2: GLL line-search.

Given cost function f : Rn → R, parameter m ∈ N, approximation and direc-
tion xk, dk ∈ Rn, parameter γ ∈ (0, 1), safeguarding parameters σ1, σ2 ∈ R :
0 < σ1 < σ2 < 1.

fmax := max{f(xk−j) : 0 ≤ j ≤ min{k,m− 1}}
xtemp := xk + dk

δ := ⟨∇f(xk), dk⟩
β := 1
while f(xtemp) > fmax + γβδ

βtemp := −1
2β

2δ/(f(xtemp) − f(xk) − βδ)
if βtemp ∈ ⟨σ1, σ2β⟩

β := βtemp

else

β := β/2
endif

xtemp := xk + βdk

endwhile

Return step-size β.

projection and previous approximation. Then, the new BB step-length is computed.
See Fig. 4.
The proof of convergence is based on fulfillment of the generalized Armijo condition
in every step, see Birgin, Martinéz, and Raydan [13].

2.1.4 Modification for QP with one matrix-vector multiplication (SPG-QP)

The SPG was developed to solve more general optimization problems on convex
sets. In our problems, the cost function is quadratic function. We can use the
prescription and the properties to simplify the GLL algorithm and we obtain an
algorithm with less cost function evaluations, i.e. with the smaller number of the
most time-consuming operation - multiplication by Hessian matrix.
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Algorithm 3: Spectral projected gradient method (SPG).

Given cost function f : Rn → R, initial approximation x0 ∈ Ω, projection onto
feasible set PΩ(x), safeguarding parameters 0 < αmin ≪ αmax, precision ε > 0,
and initial step-size α0 > 0.

k := 0
while ∥P (xk − ∇f(xk)) − xk∥ > ε

dk := P (xk − αk∇f(xk)) − xk

compute step-size βk using GLL
xk+1 := xk + βkd

k

sk := xk+1 − xk

yk := ∇f(xk+1) − ∇f(xk)
if ⟨sk, yk⟩ ≤ 0
αk+1 := αmax

else

αk+1 := min{αmax,max{αmin, ⟨sk, sk⟩/⟨sk, yk⟩}}
endif

k := k + 1
endwhile

Return approximation of solution xk.

We start with the most obvious simplifications. Notice that

yk := ∇f(xk+1) − ∇f(xk) = (Axk+1 − b) − (Axk − b) = A(xk+1 − xk) = Ask.

Since matrix A is symmetric positive definite, we can write for any sk ∈ Rn \ {0}

⟨sk, yk⟩ = ⟨sk, Ask⟩ = (sk)TAsk > 0

and the condition in SPG algorithm is always fulfiled. Moreover, the BB step-length
αk+1 = ⟨sk, sk⟩/⟨Ask, sk⟩ is the inverse Rayleigh quotient and it can be bounded by

1
λmax

≤ αk+1 ≤ 1
λmin

,
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Figure 4: SPG iteration in two steps.

where λmin and λmax are the smallest and the largest eigenvalues of matrix A. There-
fore, we can omit safeguarding parameters αmin and αmax.

Let us take a better look into GLL line-search Algorithm 2. The computation of
βtemp can be simplified using the Lemma 1.1.1. We obtain

βtemp := − β2δ

2(f(xk + βdk) − f(xk) − βδ) = − β2δ

2βδ + β2⟨Adk, dk⟩ − 2βδ

= −⟨∇f(xk), dk⟩
⟨Adk, dk⟩

:= β̄ .

This is a simple Cauchy step-size. Since the vector dk is the descent direction (2.7)
and A is SPS, our optimal β̄ is positive.
Obviously, the computation of new βtemp is independent of the previous value and
original GLL method performs solely the bisection method, i.e. it tries to half the
coefficient β and verify generalized Armijo condition. Furthermore, the value of
step-size β has to be from interval [σ1, σ2] ⊆ [0, 1], since the smaller or larger value
may cause the leaving the feasible set.

The division of step-size β by two now modifies only the generalized Armijo
condition and the algorithm stops when the condition

f(xtemp) ≤ fmax + γβδ

is fulfilled. This condition can be also simplified

0 ≥ f(xk + βdk) − fmax − γβδ

= f(xk) + β⟨∇f(xk), dk⟩ + 1
2β

2⟨Adk, dk⟩ − fmax − γβ⟨∇f(xk), dk⟩

= 1
2β

2⟨Adk, dk⟩ + (1 − γ)β⟨∇f(xk), dk⟩ + f(xk) − fmax

0 ≥ 1
2β

2 + (1 − γ)β ⟨∇f(xk),dk⟩
⟨Adk,dk⟩ + 1

⟨Adk,dk⟩(f(xk) − fmax) .



65

Figure 5: SPG-QP: Generalized Armijo condition and possible situations of step-
size.

Afterwards, we denote the function on the right hand-side and the constant term by

Φ(β) := 1
2β

2 − (1 − γ)β̄β − ξ, ξ := 1
⟨Adk, dk⟩

(fmax − f(xk)).

We are interested in β such that generalized Armijo condition in form
Φ(β) ≤ 0 (2.9)

is fulfilled. The positive root of Φ(β) is given by

β̂ := (1 − γ)β̄ +
√

(1 − γ)2β̄2 + 2ξ .
There exist only two possible situation, see Fig. 5.

Therefore, we can conclude that feasible step-size in the second step of SPG
βk ∈ [σ1,min{σ2, β̂}].

This simple interval can replace GLL, i.e. any βk from this interval fulfills the gen-
eralized Armijo condition.

The computation of the function values can be also simplified

f(x) = 1
2⟨Ax, x⟩ − ⟨b, x⟩ = 1

2⟨g − b, x⟩,

where g := ∇f(x) = Ax − b. Finally, we can simplify the computation of BB
step-length using xk+1 = xk + βkd

k

αk+1 = ⟨sk, sk⟩
⟨sk, yk⟩

= ⟨sk, sk⟩
⟨sk, Ask⟩

= ⟨βkdk, βkdk⟩
⟨βkdk, βkAdk⟩

= ⟨dk, dk⟩
⟨dk, Adk⟩

and the recursive formula for the computation of new gradient
gk+1 := Axk+1 − b = A(xk + βkd

k) − b = gk + βkAd
k.

We use all the simplification to design the Algorithm 4. For the sake of simplicity,
we relabel the coefficient γ := 1 − γ ∈ (0, 1).

Notice that the most time-consuming operation - the multiplication by Hessian
matrix A - is performed only once per iteration.
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Algorithm 4: Spectral projected gradient method for QP (SPG-QP).

Given initial approximation x0 ∈ Ω, parameters m ∈ N, γ ∈ (0, 1), safeguard-
ing parameter σ2 ∈ (0, 1), and initial step-size α0 > 0.

k := 0
g0 := Ax0 − b

f 0 := 1/2⟨g0 − b, x0⟩

while ∥g̃α(x)∥ is not sufficiently small
dk := P (xk − αkg

k) − xk

fmax := max{f(xk−j) : 0 ≤ j ≤ min{k,m− 1}}
ξ := (fmax − fk)/⟨Adk, dk⟩
β̄ := −⟨gk, dk⟩/⟨Adk, dk⟩
β̂ := γβ̄ +

√
γ2β̄2 + 2ξ

choose βk ∈ [σ1,min{σ2, β̂}]

xk+1 := xk + βkd
k

gk+1 := gk + βkAd
k

fk+1 := 1/2⟨gk+1 − b, xk+1⟩

αk+1 := ⟨dk, dk⟩/⟨Adk, dk⟩

k := k + 1
endwhile

Return approximation of solution xk.
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2.2 Projected Barzilai-Borwein method (PBB)
The easiest way how to modify gradient descent method to solve constrained problem
is to project every iteration onto the feasible set. We obtain

xk+1 = PΩ
(
xk − αk∇f(xk)

)
. (2.10)

Using this simple technique, we obtain the sequence of approximations which lies
in feasible set. If the sequence is converging to the point with the lowest function
value, then this point will be also in feasible set, i.e. we obtain a solution of min-
imization problem with constraints. However, the basic property of BB method is
non-monotonicity and this property is also typical for projected version.
The idea of the projected BB can be also seen from other point of view. The pro-
jection in prescription (2.10) can be formulated as optimization problem, see (1.12).
We obtain

xk+1 = PΩ(xk − αkg
k) = arg min

x∈Ω
∥(xk − αkg

k) − x∥ .

Using simple manipulations, this formula can be modified to the form

xk+1 = arg min
x∈Ω

f(x) − 1
2

( 1
αk

∥x− xk∥2 − ∥x− xk∥2
A

)
. (2.11)

If we choose optimal αk = ∥xk+1 − xk∥2/∥xk+1 − xk∥2
A, we get

xk+1 = arg min
x∈Ω

f(x) ,

which is in fact the solution of the original QP problem (1). Unfortunatelly, value of
xk+1 in the definition of optimal αk is unknown. Probably, we can use the optimal
value from the previous step. Afterwards, we obtain the prescription of PBB method.

PBB method is not convergent, there exist cases when the algorithm is cycling,
i.e. algorithm generates the sequence of iterations which ends in the starting ap-
proximation, see Dai and Fletcher [23]. Thus we decided to enforce the convergence
by simple fall-back strategy, see Algorithm 5.

The algorithm generates the PBB iterations until there is either the improvement
of the cost function or there are K consecutive iterations without improvement. In
the first case, an additional fixed step is carried out to achieve a sufficient decrease
of the cost function, otherwise the next iteration is defined by the fixed step-length
gradient projection step from the best of the last K iterations.
This algorithm was proposed by Posṕı̌sil and Dostál [60].
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Algorithm 5: Projected Barzilai–Borwein algorithm with fall-back (PBBf).

Choose x0, x1 ∈ Ω, α ∈ (0, 2/λAmax⟩, K ∈ N,
set k := 1, k̂ := 0, xmin := x1

while ∥gPα (xk)∥ is not small

s := xk − xk−1, αbb = sT s/sTAs

xk+1 = PΩ
(
xk − αbbg

k
)

{ Fall-back update}
if f(xk+1) < f(xmin)

xmin := PΩ(xk+1 − αgk+1), k̂ := 0
else

k̂ := k̂ + 1
endif

{Fall-back application}
if k̂ ≥ K

xk+1 := PΩ(xmin − αgmin)
xmin := xk+1, k̂ := 0

endif

k := k + 1
end while

x̂ ≈ xk
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2.3 Accelerated projected gradient descent method (APGD)
Nesterov [53] developed black-box algorithm for solving more general optimiza-
tion problems. This algorithm was called Accelerated Projected Gradient Descent
method (APGD). It is based on two basic properties of the cost function - the con-
vexity (1.10) and Lipschitz continuity (1.11). In algorithm, author uses the mapping
gradient instead of reduced gradient (1.33), which is more common in optimization
theory. Nevertheless, we show that these two gradient types are equivalent.

Definition 2.3.1
(Reduced and mapping gradient)
Let Ω ⊂ Rn be a non-empty convex set, f : Rn → R continuously differentiable

function, and γ, α ∈ R be positive non-zero constants.
Then for every x ∈ Rn, we define

• reduced gradient by prescription

g̃α(x) := 1
α

(x− xPα ) ,

where
xPα := PΩ(x− α∇f(x))

and PΩ : Rn → Ω is a projection onto Ω.

• mapping gradient by prescription

gΩ,γ(x) := γ(x− xΩ,γ) ,

where

xΩ,γ := arg min
y∈Ω

[
f(x) + ⟨∇f(x), y − x⟩ + γ

2∥y − x∥2
]
. (2.12)

In the next lemma, we present the equivalency of these two types of gradient in
QP.
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Lemma 2.3.1
(Equivalency of reduced and mapping gradient)

∀x ∈ Rn : g̃α(x) = gΩ, 1
α
(x).

Proof: Let g̃α(x) and gΩ,γ(x) be a mapping and projected gradient defined above.
We should remind, that the argument of minima is independent of adding constants or
multiplying whole cost function by positive constant. For the sake of simplicity, we denote
by symbol ∝ the equality of minimizers of two functions, i.e.

f(x) ∝ g(x) ⇔ arg min
x∈Ω

f(x) = arg min
x∈Ω

g(x).

Using this, we can write for any y ∈ Rn

f(x) + ⟨∇f(x), y − x⟩ + γ
2 ∥y − x∥2 ∝ ⟨∇f(x), y − x⟩ + γ

2 ∥y − x∥2

∝ ⟨∇f(x), y⟩ + γ
2 ∥y − x∥2

∝ ⟨∇f(x), y⟩ + γ
2 (⟨y, y⟩ − 2⟨y, x⟩ + ⟨x, x⟩)

∝ ⟨∇f(x), y⟩ + γ
2 ⟨y, y⟩ − γ⟨y, x⟩

∝ ⟨y, y⟩ + 2
γ ⟨∇f(x), y⟩ − 2⟨y, x⟩

∝ ⟨y, y⟩ − 2⟨y, x − 1
γ∇f(x)⟩

∝ ⟨y, y⟩ − 2⟨y, x − 1
γ∇f(x)⟩ + ⟨x − 1

γ∇f(x), x − 1
γ∇f(x)⟩

∝ ∥y − (x − 1
γ∇f(x))∥2

∝ ∥y − (x − 1
γ∇f(x))∥.

Afterwards, we can write

arg min
y∈Ω

[
f(x) + ⟨∇f(x), y − x⟩ + γ

2 ∥y − x∥2] = arg min
y∈Ω

∥y − (x − 1
γ∇f(x))∥

= PΩ(x − 1
γ∇f(x)).

We can see the equality between mapping and projected gradient with γ = 1
α . □

The main idea of the method is the relation between function values, the norm
of reduced gradient (Definition 2.3.1), Lipchitz constant (Definition 1.1.3), and the
constant of strong convexity (Lemma 1.1.7). The next lemma presents the basic
estimation.
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Lemma 2.3.2
(Relation between L, µ, and g̃α)
Let f be a Lipschitz continuous function and α ≥ 1/L. Then

∀y ∈ Rn ∀x ∈ Ω : f(x) ≥ f(yP ) + ⟨g̃α(y), x− y⟩ + 1
2γ ∥g̃α(y)∥2 + µ

2 ∥x− y∥2 ,

(2.13)
where

g̃α(x) := 1
α
(x− xPα ) ,

xPα := PΩ(x− α∇f(x)) .
(2.14)

Proof: See Nesterov [53]. The proof is the key idea, we decided to include it in the
thesis.
At first, let us make some preparations. We define auxiliary function Φ : Rn → R by

Φ(x) := f(y) + ⟨∇f(y), x − y⟩ + 1
2α

∥x − y∥2 , (2.15)

where y ∈ Rn is arbitrary, but fixed.
The gradient of the (2.15) is given by

∇Φ(x) : = ∇f(y) + 1
α

(x − y) . (2.16)

Furthermore, we can also write

⟨∇f(y)−g̃α(y), x−yPα ⟩ = ⟨∇Φ(yPα )− 1
α

(yPα −y)− 1
α

(y−yPα ), x−yPα ⟩ = ⟨∇Φ(yPα ), x−yPα ⟩ ≥ 0,

(2.17)
where we used (2.16) in form

∇Φ(yPα ) = ∇f(y) + 1
α

(yPα − y) .

The last inequality in (2.17) holds, because yP is the minimizer of ϕ(x) (see Lemma 1.3.6
and Nesterov’s definition of projection (2.12)).
From (2.17) we can easily get

⟨∇f(y), x − yPα ⟩ ≥ ⟨g̃α(y), x − yPα ⟩ . (2.18)

Using the definition of projected gradient in (2.14) we can write

∥g̃α(y)∥2 = ⟨g̃α(y), g̃α(y)⟩ = α2∥y − yPα ∥2 ⇒ ∥y − yPα ∥2 = α2∥g̃α(y)∥2. (2.19)

Furthermore, using the definition of projected gradient in (2.14) we can write

g̃α(y) = 1
α

(y − yPα ) ⇒ yPα = y − αg̃α(y). (2.20)
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Since 1
α ≥ L, we can write

∀y ∈ Rn : Φ(yPα ) ≥ f(yPα ) . (2.21)

Now, we are ready to start with the main estimation. Function f is strongly convex, thus
∀x, y ∈ Rn holds

f(x) ≥ f(y) + ⟨∇f(y), x − y⟩ + µ

2 ∥x − y∥2 ,

which can be modified to form

f(x) − µ
2 ∥x − y∥2 ≥ f(y) + ⟨∇f(y), x − y⟩

add smart zero

= f(y) + ⟨∇f(y), x − y⟩ + ⟨∇f(y), yPα ⟩ − ⟨∇f(y), yPα ⟩

= f(y) + ⟨∇f(y), yPα − y⟩ + ⟨∇f(y), x − yPα ⟩

estimate using (2.18)

≥ f(y) + ⟨∇f(y), yPα − y⟩ + ⟨g̃α(y), x − yPα ⟩

use definition (2.15)

= Φ(yPα ) − 1
2α∥yPα − y∥2 + ⟨g̃α(y), x − yPα ⟩

use equation (2.19)

= Φ(yPα ) − α
2 ∥g̃α(y)∥2 + ⟨g̃α(y), x − yPα ⟩

use equation (2.20)

= Φ(yPα ) − α
2 ∥g̃α(y)∥2 + ⟨g̃α(y), x − y + αg̃α(y)⟩

= Φ(yPα ) + α
2 ∥g̃α(y)∥2 + ⟨g̃α(y), x − y⟩

use equation (2.21)

≥ f(yPα ) + α
2 ∥g̃α(y)∥2 + ⟨g̃α(y), x − y⟩.

□

In Nesterov [53], it can be found the whole derivation of the algorithm. Main idea
of the algorithm, i.e. connection between the mapping gradient and the properties
of cost function, is given by the next theorem.

Theorem 2.3.1
(Lipschitz continuous strongly convex function and projected gra-
dient)
Let f : Rn → R be a Lipschitz continuous function with Lipschitz constant L and
strongly convex with constant of strong convexity µ.
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Let {xk} be a sequence generated by prescription

x0 ∈ Ω ,

xk+1 := xk − hg̃α(xk) ,

where the step-size of projected gradient α = 1
L

and h ≤ 1
L

.
Then for any given k, we have

∥xk − x̄∥2 ≤ (1 − µh)k ∥x0 − x̄∥2 ,

where x̄ ∈ Ω is a solution of the optimization problem

x̄ = arg min
x∈Ω

f(x) .

Proof: See Nesterov [53]. □

Instead of using constant step-size, Nesterov suggests to use estimate functions
sequences.

Definition 2.3.2
(Estimate sequence)
Let F be a space of estimate functions.
A pair of sequences {ϕk(x)}∞

k=0, ϕk ∈ F and {σk}∞
k=0, σk ∈ R+ is an estimate

sequence of the cost function f if

σk → 0,
∀k ≥ 0,∀x ∈ Ω : ϕk(x) ≤ (1 − σk)f(x) + σkϕ0(x) .

The next lemma demonstrates the effect of the estimate functions. It gives a
condition of convergence of function values of approximations {xk} to the function
value in the solution using estimate sequence.
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Lemma 2.3.3
(Estimate sequence and the solution)
Let us suppose that for a sequence of approximations {xk}

f(xk) ≤ ϕmin
k , ϕmin

k := min
x∈Rn

ϕk(x). (2.22)

Then
f(xk) − f(x̄) ≤ σk(ϕ0(x̄) − f(x̄)) → 0 .

Proof: See Nesterov [53]. The lemma is a key ingredient of the algorithm, thus we
decided to introduce it in the thesis.
Assume that proposition (2.22) holds. We can write

f(xk) ≤ min
x∈Ω

ϕk(x)

using the definition of estimate sequence (2.3.2)

≤ min
x∈Ω

[(1 − σk)f(x) + σkϕ0(x)]

x̄ is solution, so ∀x ∈ Ω : f(x) ≥ f(x̄)

≤ (1 − σk)f(x̄) + σkϕ0(x̄)

= f(x̄) + σk(ϕ0(x̄) − f(x̄)).

Notice that (ϕ0(x̄) − f(x̄)) is independent of k, i.e. constant. If σk → 0, then

σk(ϕ0(x̄) − f(x̄)) → 0 .

□

We can define estimate sequence in a special form based on the estimation term.
See the lemma below.

Lemma 2.3.4
(Special choice of estimate sequence)
Let

• ϕ0(x) ∈ F is arbitrary function,

• {yk}∞
k=0 is arbitrary sequence in Ω,

• {αk}∞
k=0 : αk ∈ (0, 1),

∞∑
k=0

αk = ∞,

• σ0 = 1.
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Then the pair of sequences {ϕk(x)}∞
k=0, {σk}∞

k=0 defined by

σk+1 := (1 − αk)σk
ϕk+1(x) := (1 − αk)ϕk(x)

+ αk
[
f(yPk,α) + ⟨g̃α(yk), x− yk⟩ + α

2 ∥g̃α(yk)∥2 + µ
2 ∥x− yk∥2

]
(2.23)

is estimate sequence.
Proof: See Nesterov [53]. The lemma shows how the basic estimation of cost function
based on the norm of projected gradient, Lipschitz constant, and constant of strong con-
vexity, influence the form of estimate function. We decided to include it in the thesis.
At first, we show that for k = 0 is ϕk, σk holds the inequality (2.3.2), i.e.

ϕ0(x) ≤ (1 − σ0)f(x) + σ0ϕ0(x) .

This inequality in fact holds, because left side is equal to ϕ0 after setting σ0 : = 1.

Let us presume, that (2.3.2) holds for ϕk, σk, k ≥ 0, i.e.

ϕk(x) ≤ (1 − σk)f(x) + σkϕ0(x) . (2.24)

And now we try to estimate ϕk+1(x) and prove also the same inequality for ϕk+1, σk+1.
At first, from (2.24) we can easily get

ϕk(x) − (1 − σk)f(x) ≤ σkϕ0(x) . (2.25)

And now, we start with formulae (2.23)

ϕk+1(x) = (1 − αk)ϕk(x) + αk
[
f(yPk ) + ⟨g̃α(yk), x − yk⟩ + α

2 ∥g̃α(yk)∥2 + µ
2 ∥x − yk∥2

]
we can use (2.13)

≤ (1 − αk)ϕk(x) + αkf(x)

add smart zero

= (1 − αk)ϕk(x) + αkf(x) + (1 − 1 + σk − σk + αkσk − αkσk)f(x)

= (1 − (1 − αk)σk)f(x) + (1 − αk)(ϕk(x) − (1 − σk)f(x))

using (2.25) and αk ∈ (0, 1)

≤ (1 − (1 − αk)σk)f(x) + (1 − αk)σkϕk(x)

using the recursive formulae for σk+1

= (1 − σk+1)f(x) + σk+1ϕk(x).

□

Nesterov uses tricky simplifications and substitutions to obtain as simple algo-
rithm as possible. At first, he defines the estimate sequence which uses the mini-
mizers.
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Lemma 2.3.5
(Substitution and simplification of APGD algorithm)
Let the first estimate function have a form

ϕ0(x) : = ϕmin
0 + γ0

2 ∥x− v0∥2 ,

where ϕmin
0 ∈ R, v0 ∈ Rn.

Then the process (2.23) is equivalent to

ϕk(x) : = ϕmin
k + γk

2 ∥x− vk∥2 ,

where

γk+1 : = (1 − αk)γk + αkµ ,

vk+1 : = 1
γk+1

[(1 − αk)γkvk + αkµyk − αkg̃α(yk)] = arg min
x
ϕk+1(x) ,

ϕmin
k+1 : = (1 − αk)ϕmin

k + αkf(yPk ) +
(
αk

2L − α2
k

2γk+1

)
∥g̃α(yk)∥2

+ αk(1−αk)γk

γk+1

(
µ
2 ∥yk − vk∥2 + ⟨g̃α(yk), vk − yk⟩

)
.

Finally, if we choose

γk+1 : = (1 − αk)γk + αkµ ,

vk+1 : = 1
γk+1

[(1 − αk)γkvk + αkµyk − αkg̃αk
(yk)] = arg min

x
ϕk+1(x) ,

ϕmin
k+1 : = (1 − αk)ϕmin

k + αkf(yPk ) +
(
αk

2L − α2
k

2γk+1

)
∥g̃αk

(yk)∥2

+ αk(1−αk)γk

γk+1

(
µ
2 ∥yk − vk∥2 + ⟨g̃αk

(yk), vk − yk⟩
)

and make some other tricky simplifications, we obtain Algorithm 6.
Unfortunately, the main disadvantages of the algorithm are the estimations of

Lipchitz constant and the constant of convexity. If the quadratic cost function has
SPD Hessian, then the constant of convexity is given by the smallest eigenvalue,
see the remark below Lemma 1.1.7. If the Hessian matrix is SPS, then the smallest
eigenvalue is equal to zero, thus we choose in both cases µ = 0. The solution of
quadratic equation in Algorithm 6 is given by

Θk+1 = 1
2(Θk +

√
Θ2
k + 4Θk).
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Algorithm 6: Accelerated projected gradient descent method (APGD).

Given cost function f , initial approximation x0, projection onto feasible set
PΩ(x), accuracy ε > 0.

k := 0
Θ0 := 1
y0 := x0

while ∥g̃1/L(xk)∥2 > ε

xk+1 := PΩ(yk − 1/L∇f(yk))
Θk+1 solves Θ2

k+1 = (1 + Θk+1)Θk + Θk
µ
L

βk := Θk(1−Θk)
Θ2

k
+Θk+1

yk+1 := xk+1 + βk+1(xk+1 − xk)
k := k + 1

endwhile

Return approximation of solution xk.

To find appropriate L, Heyn [47] proposes the line-search algorithm similar to GLL
algorithm. He sets initial

L0 = ∥∇f(x0) − ∇f(x1)∥2

∥x0 − x1∥2 = ∥x0 − x1∥2
A

∥x0 − x1∥2

with arbitrary x0, x1 ∈ Rn, x0 ̸= x1. In every iteration of APDG, Heyn runs the
backtracking algorithm to find Lk such that

f(xk+1) ≤ f(yk) + ⟨∇f(yk), xk+1 − yk⟩ + Lk

2 ∥xk+1 − yk∥2,

xk+1 = yPk,1/Lk
= PΩ(yk − 1/Lk∇f(yk))

(2.26)

and using this, he preserves the convergence of the algorithm. In this thesis, we
simplify this backtracing algorithm.
In (1.8) we set y := xk+1, z := yk and write the inequality (2.26) in form⟨

∇f(xk+1) + ∇f(yk), xk+1 − yk
⟩

2 ≤ ⟨∇f(yk), xk+1 − yk⟩ + Lk
2 ∥xk+1 − yk∥2

2
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and after straightforward manipulations, we obtain the estimation

∥xk+1 − yk∥2
A

∥xk+1 − yk∥2 ≤ Lk.

Using Lemma 1.1.5 we can simply set

Lk = λAmax.

In our numerical experiments with SPS Hessian matrix, we set µ = 0 and L =
λmax. Unfortunately, this choice is suitable only for some cases, see for instance the
discussion in the end of Section 3.3.5.
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2.4 Active-set methods (MPGP,MPGPS)

In this section, we present a basic schema of all active-set algorithms proposed
by Dostál et al. [26, 34, 36, 32, 33, 31, 30, 16, 15, 29]. The basic version was
proposed independently by Dostál [25] and Friedlander and Mart́ınez [40] and can
be considered as a modification of the Polyak algorithm. Dostál and Schöberl in
[36] combine the proportioning algorithm with the gradient projections [65], they
use the constant Γ > 0, the test to decide about leaving the face, and three types
of steps to generate the sequence of iterates xk that approximate the solution.

Algorithm 7: Modified Proportioning with Gradient Projection (MPGP).

Choose x0 ∈ Ω
for k = 0, 1, 2, . . . (while a stopping criterion is not achieved)

if proportioning condition is satisfied

CG step or CG halfstep
make one CG step to solve problem on free set using free gradient
if this step means leaving Ω, do only a half-step and restart CG

else

gradient projection step
make one gradient projection step and restart CG on free set

endif

k := k + 1

endfor

The algorithm is based on using the free, chopped, and projected gradients to
minimize the cost function on the free set and afterwards on the active set. The
switching between these processes is realized by the proportioning condition.

The CG step of algorithm presents the original conjugate gradient method step
(CG method was firstly presented by Hestenes and Stiefel [46]). The algorithm
constructs the Krylov subspace and conjugate directions pk from the free gradients
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φ(xk) using prescriptions

CG step
step-length αcg = φ(xk)Tpk/(pk)TApk

new approximation xk+1 = xk − αcgp
k

new gradient gk+1 = gk − αcgAp
k

orthogonalization coefficient βcg = φ(xk+1)TApk/(pk)TApk

new conjugate direction pk+1 = φ(xk+1) − βcgp
k

In the case that the free set is changed, it is neccessary to start building the Krylov
space from the begining, e.g. restart CG method on free set with

pk+1 = φ(xk+1) .

The performance of MPGP is improved by enhancing the feasible half-step intro-
duced in Dostál and Schöberl [36]. This modification of MPGP algorithm is based
on a simple observation that the gradient can be updated at any point on the con-
jugate gradient path without a matrix–vector multiplication, so that the gradient
projection can be carried out at nearly the same cost from the nearest point of the
boundary of feasible set to the current iteration in the conjugate gradient direction
rather than from the current iteration.

CG halfstep
step-length αf = max{α ∈ R : xk − αpk ∈ Ω}
new approximation xk+1/2 = xk − αfp

k

new gradient gk+1/2 = gk − αfAp
k

projection step xk+1 = PΩ(xk+1/2 − ᾱgk+1/2)
new gradient gk+1 = Axk+1 − b

In the algorithm, we use a projection step with the constant step-length ᾱ ∈
(0, ∥A∥−1). The reason is given by Theorem 1.5.1. Moreover, if the feasible set is sub-
symmetric, we can use Theorem 1.5.2 and the constant step-length ᾱ ∈ (0, 2∥A∥−1).
Since the analysis is based on the worst case analysis, the implementation of the
feasible half-step does not result in improving the error bounds, but it improves the
performance of MPGP due to the additional decrease of the cost function obtained
just for a few scalar products.

Now we are ready to present the basic and modified variants of Algorithm 7.
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2.4.1 Modified Proportioning with Gradient projection (MPGP)

This algorithm was developed to solve QP problems on any closed convex feasible
set. It was proposed by Dostál et al. [26, 30] and it is based on Algorithm 7 with
the stopping criterion based on the norm of projected gradient (see Lemma 1.4.1)

∥gP (x̃)∥ ≤ ε∥b∥ , (2.27)

the proportioning condition

∥β(xk)∥ ≤ Γ∥φ(xk)∥ , (2.28)

where Γ > 0 is a constant parameter of algorithm. The gradient projection step is
based on the constant step-length (see Theorem 1.5.1 and Theorem 1.5.2)

xk+1 = PΩ(xk − ᾱgk) . (2.29)

2.4.2 Modified Proportioning with Barzilai-Borwein gradient projections (MPGP-
BB)

Constant step-length always guarantees the descent of cost function, see Theorem
1.5.1 and Theorem 1.5.2. However, the numerical experiments show that nonmono-
tone stategies could decrease the number of projection steps. For instance, the
modification with PBB step given by

xk+1 := PΩ(xk − αBBk ∇f(xk)), αBBk := ⟨sk, sk⟩
⟨Ask, sk⟩

, sk := xk − xk−1 (2.30)

was presented by Posṕı̌sil [58]. This algorithm was inspired by the SPG, which
uses the similar type of steps, see Section 2.1. The main drawback of the presented
MPGP-BB algorithm is the absence of the proof of convergence. The PBB method
is non-monotone and difficult to analyze. Therefore, the SPG method is using an
additional line-search method to control the descent of the cost function to achieve
the global convergence. In our algorithm, we tried to omit this line-search. However,
this control can be realized using the fallback strategy presented in Section 2.2. In
Posṕı̌sil and Dostál [59], we present numerical experiments of MPGP-BB for solving
QP problem with separable conical constraints in particle dynamics.

2.4.3 Modified Weak Proportioning with Gradient projections (MwPGP)

In Bouchala et al. [15], we present a modification of the original MPGP for solving
the QP problems on feasible sets with strong curvature, such as ill-conditioned
ellipses. Instead of using the projected gradient, we propose to use reduced projected
gradient. We use the stopping criterion given by

∥g̃Pᾱ (x̃)∥ ≤ ε∥b∥ , (2.31)



82

the proportioning condition

2δ∥g̃Pᾱ (xk)∥2 ≤ ∥φ(xk)∥2 , (2.32)

where δ ∈ (0, 1/2⟩ is a constant parameter of algorithm. The gradient projection
step based on the constant step-length (2.29) ᾱ ∈ (0, 2∥A∥−1).

The main theoretical results concerning the MwPGP algorithm are the subject
of the following theorem.

Theorem 2.4.1
(Convergence of MwPGP)
Let Ω be a closed convex set, let x̂ denote the unique solution of (1) with sub-

symmetric feasible set, let λ1 denote the smallest eigenvalue of A, and let xk be
generated by Algorithm MwPGP with x0 ∈ Ω, ᾱ ∈ (0, 2∥A∥−1), and δ ∈ (0, 1/2⟩.
Let C ≥ 0 denote the constant introduced in Lemma 1.4.5. Then the following
statements hold:
(i) If 0 < α ≤ ∥A∥−1, then for any k ≥ 0

f
(
xk+1

)
− f(x̂) ≤ η(α)

(
f(xk) − f(x̂)

)
, (2.33)

and

∥gP (xk)∥2 ≤
2
(
1 + η

)
α̂
(
1 − η

)ηk(f(x0) − f(x̂)
)
, (2.34)

where
η = η(α) = 1 − δC−2αλ1, α̂ = 2∥A∥−1 − α.

(ii) If Ω is subsymmetric and ∥A∥−1 ≤ α ≤ 2∥A∥−1, then (2.33) and (2.34)
hold with

η = η(α) = 1 − 1
2δC

−2α̂λ1.

Proof: See Bouchala et al. [15]. □
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2.4.4 Modified Proportioning with Reduced Gradient projections (MPRGP)

If the feasible set is described only using bound constraints, the projection step can
be simplified to the form of Steepest Descend method with chopped gradient, e.g.

MPRGP proportioning step
step-length αSD = (gk)Tβ(xk)/β(xk)TAβ(xk)
new approximation xk+1 = xk − αSDβ(xk)
new gradient gk+1 = gk − αSDAβ(xk)

(2.35)

This algorithm was presented by Dostál et al. [26]. Furthermore, the theory can be
extended to QP with box constraints, see Dostál [25].

2.4.5 Modified Proportioning with Reduced Gradient Projections for the SPS
Hessian (MPRGPS)

MPRGP algorithm was developed to solve the problems with a SPD Hessian ma-
trix. The recent generalization to the problems with symmetric positive semidefinite
Hessian suggests only one difference from the original algorithm, specifically a test
of the problem solvability

Control the solvability
if min{αf , αcg} = ∞, then the problem has no solution.

The coefficient αf is the maximal feasible step-size and αcg is a coefficient of the
conjugate gradient computed from the free gradient. If both coefficients are equal to
infinity, then the problem has no solution. The theory and numerical experiments
will be published in Dostál and Posṕı̌sil [35].
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2.5 Augmented Lagrangian method (SMALSE-M)
The algorithms for solving the minimization problems with separable inequalities
described in previous sections can be plugged into SMALSE-M (Semimonotonic
Augmented Lagrangian for separable and equality constrained QP) algorithm for
the solution of the problem to find the minimizer of a convex quadratic function
subject to separable convex inequality and linear equality constraints (1.36).
Let us denote the Lagrange multipliers corresponding to inequality constraints and
inequality constraints by λI and λE, respectively (see Lemma 1.3.7). The SMALSE-
M is a Uzawa-type algorithm which generates the approximations for λE in the outer
loop and solves auxiliary problems with inequality constraints in the inner loop.
Let us remind the augmented Lagrangian (1.49) for problem (1.36)

L(x, λE, ρ) = 1
2x

T (A+ ρBTB)x− (b−BTλ)Tx.

SMALSE-M is closely related to the earlier work of Friedlander and Santos with
the present author [27]. Application of the update rule of SMALSE for the penalty
parameter again results in convergence of the feasibility error that is independent of
the conditioning of the equality constraints. Let us recall that the basic scheme that
we use was proposed by Conn, Gould and Toint [20], who adapted the augmented
Lagrangian method to the solution of problems with a general cost function subject
to general equality constraints and simple bounds.

Algorithm has been proved to be well defined, that is, any convergent algorithm
for the solution of the auxiliary problem required in Step 1 will generate either xk
that satisfies (2.36) in a finite number of steps or a sequence of approximations
that converges to the solution of QP problems with inequalities and linear equali-
ties (1.36). The basic theoretical results concerning this algorithm are very similar
to those for SMALE, it is just enough to replace the gradient g by the projected
gradient gP .

The optimality of the algorithm was shown by Dostál [26] and Dostál and
Kozubek [30].

The algorithm was a key ingredient in the development of of scalable algorithms
for contact problems by Dostál et al. [32], [33], Sadowská et al.[63], and contact
shape optimization problems by Vondrák et al. [68]. More information about this
algorithm can be found also in Dostál [26] and Horák [50]. The review can be found
also in Dostál and Posṕı̌sil [34].
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Algorithm 8: SMALSE–M

Given η > 0, β ∈ (0, 1), M0 > 0, ρ > 0, and λ0
E ∈ Rm.

for k = 0, 1, 2, . . .

Step 1. Inner iteration with adaptive precision control.
Find xk ∈ ΩI such that

∥gP (xk, λkE, ρ)∥ ≤ min{Mk∥Bxk∥, η} (2.36)

Step 2. Update Lagrange multipliers.

λk+1
E = λkE + ρBxk

Step 3. Update M provided the increase of the Lagrangian is not sufficient.
if k > 0 and

L(xk, λkE, ρ) < L(xk−1, λk−1
E , ρ) + ρ

2∥Cxk∥2

then
Mk+1 = βMk,

else
Mk+1 = Mk.

endfor

x̂ ≈ xk
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3 Applications

We present the results of solving practical applications using algorithms presented
in Section 2. In the first part of this section, we study the efficiency on solution of
geometric problems, which leads to QP problems. Since these optimization prob-
lems has simple structure, our results are easy to reproduce. The second part of the
section is dedicted to the solution of linear elasticity contact problems. The algo-
rithms for solving such a problems have long history in the Department of Applied
Mathematics at VŠB-Technical University of Ostrava and they are based on the
work of Dostál. In the thesis, we present a numerical results performed on Anselm
supercomputer. In the third part, we are interested in the solution of multi-body
dynamics system. This part was motivated by results obtained by Negrut and his
team from SBEL University of Wisconsin-Madison.

During the comparison of algorithms, we are interested mostly in

• the descend of stopping criterion - the norm of the projected gradient reflects
the convergence of approximations to the solution of the problem,

• computing time - better algorithm solves the problem faster; this time depends
on the hardware specification, we compare computing time of the algorithms
on the same machine and in the same programming environment, so this is
not important for the comparision,

• number of iterations - faster algorithm performs the lower number of iterations;
nevertheless, the resulting time depends also on the complexity of one iteration,

• number of Hessian multiplications - the multiplication by Hessian matrix is
the most time-consuming operation in QP; in some algorithms, this operation
can be performed different times during different types of iterations, it bet-
ter reflexes the computing complexity of the algorithm than the number of
iterations,

with respect to problem properties such as

• problem size - the number of unkowns defines the basic complexity of the
problem,

• spectral properties of Hessian matrix - the speed of convergence of gradient
methods usually depends on the condition number and distribution of eigen-
values,
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• norm of the right-hand side vector - our stopping criteria reflects the norm of
this vector.

Short notice about performance profiling
To compare the efficiency of algorithms, we study and use the performance pro-

filing introduced by Dolan and Moré [24]. Authors present performance profile for
the solver as cumulative distribution function for a performance metric. Let us de-
note the set of all problems and the set of all solvers by P and by S, respectively.
For each problem p ∈ P and solver s ∈ S, we define

tp,s := value of performance measure required to solve problem p by solver s

and performance ratio
rp,s := tp,s

min{tp,s, s ∈ S}
.

If and only if the solver s does not solve the problem p, then we set the maxi-
mum value rp,s = rmax < ∞. Accordingly, we obtain rp,s ≤ rmax for all problems
and solvers. Furthermore, we define ρs(τ) as the probability for solver s that a
performance ratio rp,s is within a factor τ ∈ R of the best possible ratio, i.e.

ρs(τ) := 1
|P|

|{p ∈ P : rp,s ≤ τ}|.

The function ρs : R → [0, 1] is the cumulative distribution function for the perfor-
mance ratio. The solvers with large probability ρs(τ) is to be preferred.

Example 3.0.1
To demostrate the algorithm profiling, we solve a simple benchmark of the system of
linear equations resulting from the Finite Element method (FEM) discretization of
the 1D string deflection. We consider a string on interval ⟨0, 1⟩ with homogeneous
Dirichlet boundary conditions, see Fig. 6. The problem in continuous form is

Figure 6: Benchmark - the deflection of the string.
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described by Cauchy problem with 1D Laplace equation

−u′′(x) = f(x), x ∈ [0, 1],
u(0) = u(1) = 0,

where u is unknown displacement (the deflection of the string) and f(x) := 1 is a
density of applied force. Using Galerkin method and FEM for discretization, we
obtain a system of linear equations with the dimension based on the discretization
parameter. The set of the problems P is defined by several choices of this parameter
n = 5, 10, 15, . . . 100. We compared Conjugate Gradient method (CG), Barzilai-
Borwain method (BB), and Steepest Descent (SD) method to solve the problems
with initial approximation x0 := 0, relative precision ε = 10−4, and maximum
iterations 2000. The numbers of iterations can be found in Table 9.

n 5 10 15 20 25 30 35 40 45 50 55 . . .

CG 2 4 7 9 12 14 17 19 22 24 27 . . .

BB 6 28 51 88 108 99 181 171 109 329 207 . . .

SD 9 130 358 656 1076 1566 2000 2000 2000 2000 2000 . . .

Table 9: The number of iterations for solving system of linear equations in string
benchmark.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

τ

P
(r

p
,s
≤

τ
:
s
∈
S
)

 

 

CG

BB

SD

Figure 7: The number of iterations for solving system of linear equations in string
benchmark - performance profile on [0, 20].

We utilize the results from the table to performance profiles, see Fig. 7. The
results show nothing revolutionary - the best algorithm in this case is CG. Neverthe-
less, the profiles can reveal the additional information. At first, we should remark
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that the profile ignores the dependency of the number of iterations on dimension
of the problem, the objective of profiling is only the ratio between the number of
iterations of given solver and the best solver for each problem. It is constructed in a
such way, that each problem has the same weight in the comparison. For instance,
if we choose τ̂ = 9, then the function values of cumulative distribution functions
ρCG(τ̂) = 1.0, ρBB(τ̂) = 0.65, ρSD(τ̂) = 0.05 testify e.g. that

• the best algorithm (subject to the number of iterations) is CG. The ratio
between the CG iterations and the best algorithm for given problem is equal to
1 for all problems, which means that also the cumulative distribution function
ρCG is equal to one.

• there is 65% of all problems, which are solved by BB using the number of
iterations k̂, such that the ratio between k̂ to solve problem p and the number
of iterations necessary to solve p by the best algorithm (CG), is lower than
τ̂ = 9. Using the other words, 65% of the problems is solved using maximally
9-times larger number of iterations then the best algorithm (CG).

• 1−ρs(τ) is the fraction of problems that the solver cannot solve within a factor
τ̂ of the best solver, including problems for which the solver fails. This means
that there exists 95% problems, which were solved at least 9-times slower by
SD then by the best algorithm (CG).

• for our comparison, it is not important that SD method was stopped after
2000 iterations.

3.1 Geometric optimization
A lot of QP problems naturally arises in geometric problems. The reason is that
every problem of minimization of a norm can be equivalently formulated as QP
problem, i.e.

arg min
x∈Ω

∥x− a∥ = arg min
x∈Ω

⟨x− a, x− a⟩ = arg min
x∈Ω

1
2x

T Ix− aTx .

Usually, such problems are solved by combinatorial algorithms. In this section, we
present how to solve selected problems using iterative QP algorithms presented in
Section 2. We are motivated by recent dissertation thesis by Schönherr [66]. The
author compares several methods, but none of them has such optimal properties
like the methods presented here. The efficiency of the algorithms is presented and
demostrated on the numerical experiments.
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3.1.1 Polytope distance

Definition 3.1.1
(Convex polytope.)
Convex polytope S is the set of all convex combinations of a finite point set S,
i.e.

S :=

⎧⎨⎩v ∈ Rn : v :=
|S|∑
i=1

αivi; ∀i = 1, . . . , |S| : αi ≥ 0, vi ∈ S,
|S|∑
i=1

αi = 1

⎫⎬⎭ .
Let us consider two convex polytopes P,Q in Rd desribed by the boundary point
sets

P := {p1, . . . , pnp} ⊂ Rd ,

Q := {q1, . . . , qnq} ⊂ Rd .

The problem is to find the shortest distance between these two objects

min
p∈P,q∈Q

∥p− q∥ . (3.1)

Every interior point of the convex polytope can be expressed as a convex linear
combination of given points in sets P and Q

∀p ∈ P ∃α1, . . . , αnp ∈ R : p =
np∑
i=1

αipi ,

where
np∑
i=1

αi = 1 and 0 ≤ αi ≤ 1 ∀i = 1, . . . , np ,

∀q ∈ Q ∃β1, . . . , βnq ∈ R : q =
nq∑
i=1

βiqi ,

where
nq∑
i=1

βi = 1 and 0 ≤ βi ≤ 1 ∀i = 1, . . . , nq .

(3.2)

We denote
y := [α1, . . . , αnp , β1, . . . , βnq ]T ∈ Rnp+nq ,

C := [p1, . . . , pnp ,−q1, . . . ,−qnq ] ∈ Rd,np+nq ,

B :=

⎡⎢⎣ 1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1

⎤⎥⎦ ∈ R2,np+nq ,

c := [1, 1]T ∈ R2.

Afterwards, the cost function can be reformulated

∥p− q∥ =

np∑
i=1

αipi −
nq∑
i=1

βiqi

 = ∥Cy∥
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and feasible set conditions have the form

By = c ∧ y ≥ 0 .

After these notations, the problem (3.1) can be reformulated as

ȳ := arg min
y∈ΩE∩ΩI

yTCTCy ,

ΩE := {y ∈ Rnp+nq : By = c} ,

ΩI := {y ∈ Rnp+nq : y ≥ 0} .

(3.3)

The next step consists of homogenization and orthogonalization. We introduce a
substitution

x := y − yin ⇒ y = x+ yin , (3.4)
where yin is arbitrary point from ΩE. We can choose

yin :=
[

1
np
, . . . ,

1
np
,

1
nq
, . . . ,

1
nq

]
∈ Rnp+nq .

Afterwards, the cost function and conditions have the form

f(x) := 1
2∥C(x+ yin)∥2 = 1

2x
T

=:A  
CTC x+ xT

=:−b  
CTCyin + c, c =: 1

2y
T
inC

TCyin = const. ,
B(x+ yin) = Bx+Byin = Bx+ c ⇒ (By = c ⇔ Bx = 0) ,
y ≥ 0 ⇔ x ≥ −yin .

Moreover, the matrix B can be orthonormalized using simple process

B̂ :=

⎡⎢⎣ 1√
np

0

0 1√
nq

⎤⎥⎦B .

We obtained QP with homogeneous orthogonal linear equality constraints and bound
inequality constraints

x̄ := arg min
x∈ΩE∩ΩI

1
2x

TAx− bTx ,

ΩE :=
{
x ∈ Rnp+nq : B̂x = 0

}
,

ΩI := {x ∈ Rnp+nq : x ≥ −yin} .

(3.5)

After solving this problem, the original solution can be obtained using back sub-
stitution (3.4) to obtain y, i.e. the coeficients of linear combinations (3.2) of the
nearest points from each polytope.
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Numerical experiments
We consider two circles discretized by parameter m ≥ 3, whose boundary points

are defined by P,Q ∈ R2,m with columns

P∗,i =

⎡⎢⎣ cos(2iπ/m) − 2
sin(2iπ/m)

⎤⎥⎦ , Q∗,i =

⎡⎢⎣ cos(π − 2iπ/m) + 2
sin(π − 2iπ/m)

⎤⎥⎦ , i = 0, . . . ,m− 1 .

Examples for m = 5 and m = 7 can be found in Fig. 8.
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Figure 8: Testing benchmark for polytopes distance with discretization parameter
m = 5 (left) and m = 7 (right).

The solution of the problem for any m is given by

ȳ = [α1, . . . , αm, β1, . . . , βm]T = [1, 0, . . . , 0  
∈Rm

, 1, 0, . . . , 0  
∈Rm

]T .

In this problem, we can directly compute the regular condition number of Hessian
matrix

κ(A) = κ(CTC) = κ(CCT ) = κ

⎛⎜⎜⎝
⎡⎢⎢⎣

np∑
i=1

P 2
i,1 +

nq∑
i=1

Q2
i,1

np∑
i=1

Pi,1Pi,2 +
nq∑
i=1

Qi,1Qi,2
np∑
i=1

Pi,2Pi,1 +
nq∑
i=1

Qi,2Qi,1
np∑
i=1

P 2
i,2 +

nq∑
i=1

Q2
i,2

⎤⎥⎥⎦
⎞⎟⎟⎠ .

Moreover, it holds

np∑
i=1

Pi,2Pi,1 +
nq∑
i=1

Qi,2Qi,1 =
m−1∑
i=0

(
cos

(
2iπ
m

)
− 2

)
sin

(
2iπ
m

)
+

m−1∑
i=0

(
cos

(
π − 2iπ

m

)
+ 2

)
sin

(
π − 2iπ

m

)
= 0 ,
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so

κ(A) = κ

⎛⎜⎜⎝
⎡⎢⎢⎣

np∑
i=1

P 2
i,1 +

nq∑
i=1

Q2
i,1 0

0
np∑
i=1

P 2
i,2 +

nq∑
i=1

Q2
i,2

⎤⎥⎥⎦
⎞⎟⎟⎠ .

Afterwards, the condition number can be expressed

κ(A) =

np∑
i=1

P 2
i,1 +

nq∑
i=1

Q2
i,1

np∑
i=1

P 2
i,2 +

nq∑
i=1

Q2
i,2

=

m−1∑
i=0

(
cos

(
2iπ
m

)
− 2

)2

m−1∑
i=0

sin2
(

2iπ
m

) ∀m ≥ 3 .

Let us consider α ∈ R and let us present a complex number z ∈ C by prescription

z := cosα + i sinα ,

where i is imaginary unit. Then by De Moivre’s formula we can write
m−1∑
i=0

(cos(iα) + i sin(iα)) =
m−1∑
i=0

zi = zm − 1
z − 1 = cos(mα) + i sin(mα) − 1

z − 1 .

If we choose specific α in previous equality, we obtain next

α := 2π
m

⇒
m−1∑
i=0

(
cos

(
2iπ
m

)
+ i sin

(
2iπ
m

))
= 0 ⇒

m−1∑
i=0

cos
(

2iπ
m

)
= 0,

α := 4π
m

⇒
m−1∑
i=0

(
cos

(
4iπ
m

)
+ i sin

(
4iπ
m

))
= 0 ⇒

m−1∑
i=0

cos
(

4iπ
m

)
= 0.

(3.6)
Now, we return back to regular condition number and ∀m ≥ 3 we can write (using
(3.6))

κ(A) =

m−1∑
i=0

(cos( 2iπ
m )−2)2

m−1∑
i=0

sin2( 2iπ
m )

=

m−1∑
i=0

cos2( 2iπ
m )−4 cos( 2iπ

m )+4

m−1∑
i=0

sin2( 2iπ
m )

=

m−1∑
i=0

(
1+cos( 4iπ

m )
2 −4 cos( 2iπ

m )+4
)

m−1∑
i=0

1−cos( 4iπ
m )

2

=
1
2

m−1∑
i=0

cos( 4iπ
m )−4

m−1∑
i=0

cos( 2iπ
m )+

m−1∑
i=0

9
2

− 1
2

m−1∑
i=0

cos( 4iπ
m )+

m−1∑
i=0

1
2

= 9 .

We implemented the algorithms in MATLAB environment and solved the prob-
lem with several values of the discretization parameter m. The dimension of opti-
mization problem is given by n = 2m. We solve each problem using SMALSE-M with
MPRGPS, PBBF, SPG-QP, and APGD. We demand relative precision ε = 10−4·∥b∥.
As an initial approximation of inner solver, we used a previous iteration of outer
solver. All other parameters of algorithms can be found in Table 10.
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SMALSE-M ρ = λ̃Amax, η = 1, β = 2,M0 = 1, x0 = 0
all inner solvers ᾱ = 1.95/λ̃Amax, x

0
in = PΩ(xk−1

out ), εin = 10−6

MPRGPS Γ = 1
PBBf K = 10, x1 = PΩ(x0 − ᾱg0)
SPG-QP m = 10, γ = 0.1, σ2 = 0.9999, α0 = ᾱ

APGD L = λ̃Amax

Table 10: Algorithms settings.

Number of outer iterations of SMALSE-M is 6 independently on the inner solver
and on dimension of the problem 2m. We plot the sum of the numbers of inner
solvers iterations in Fig. 9 and the number of all performed Hessian multiplications
in Fig. 10. The performace profiles with number of iterations and number of Hessian
multiplication can be found in Fig. 11. In this case ∥b∥ = 120.
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Figure 9: Polytope distance: number of inner iterations.

To study the behaviour of algorithms during the solution precess, we decided to
choose m = 100 and depict the Euclidean norm of the stopping criteria - reduced
gradient, see Fig. 12.

It is necessary to notice that the Hessian matrix of solved optimization problem is
SPS. The theory of outer loop performed by SMALSE-M algorithm was presented by
Dostál [26] only for SPD matrices and/or for the problems where the SPS Hessian
matrix is in the inner loop regularized by the penalty, see Theorem 1.7.2. This
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Figure 10: Polytope distance: number of Hessian multiplications.
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Figure 11: Polytope distance: performance profiles - number of iterations and num-
ber of Hessian multiplications.

property is based on

KerA ∩ KerB = {0}.

If this condition is fulfilled, then the inner algorithm minimizes the problem with
SPD matrix. However, the presented problem of polytope distance is not problem
with such a property and the inner solver still works with only SPS Hessian matrix.
Despite this fact, we are still able to solve the problem and our numerical results
indicate the efficiency of MPRGPS and SPG-QP algorithms.
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Figure 12: Polytope distance: the descent of the norm of reduced gradient.

3.1.2 Smallest enclosing ball

Let us consider the set of m points

P = {p1, . . . , pm} ⊂ Rd .

The problem is to find a center of ball such that the maximum distance between
this center and points in P is minimal, i.e.

p̄ := arg
p

min
p∈Rd

{max
pi∈P

∥pi − p∥} , (3.7)

and the radius of this ball is given by the value of maximum distance between the
center and points from P , i.e.

r := max
pi∈P

∥pi − p∥ .

Similarly to Section 3.1.1, we will search for a coeficient vector of the convex linear
combination

p =
m∑
i=1

αipi, where
m∑
i=1

αi = 1 and 0 ≤ αi ≤ 1 ∀i = 1, . . . ,m .

The reason is that the center of enclosing ball lies in the convex hull of P (see
Schönherr [66]).
Afterwards, we denote

y := [α1, . . . , αm]T ∈ Rm ,

C := [p1, . . . , pm] ∈ Rd,m ,

b := [pT1 p1, . . . , p
T
mpm] ∈ Rm .
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Then the problem (3.7) can be reformulated as

min
p∈Rd

{max
pi∈P

∥pi−p∥} = min
y∈ΩE∩ΩI

{max
pi∈P

1
2y

TCTCy−(Cpi)Ty} = min
y∈ΩE∩ΩI

1
2y

T CTC  
=:A

y−bTy ,

where
ΩE := {y ∈ Rm : Bx = 1} ,

ΩI := {y ∈ Rm : x ≥ 0} ,

B := [1, . . . , 1] ∈ R1,m .

Moreover, the problem can be homogenized and solved using the same methodology
as in Section 3.1.1. We solve the problem to obtain the center of ball p̄. Afterwards,
the radius can be computed by

r =
√

−p̄TAp̄+ 2bT p̄ .

Numerical experiments
We work with random data in our benchmark. We generate n = 100 random

points from circle
{p ∈ R2 : ∥p− [1, 1]T∥2 ≤ 1}.

Afterwards, we discard the information about the circle and try to find the enclosing
ball using the process described above. As an initial approximation of inner solver,
we used a previous iteration of outer solver. All other parameters of algorithms
can be found in Table 10. We track the descend of stopping criteria during the
solution of the numerical problem, see Fig. 14. In this case κ̂ = 12.2912, λmax =
552.5665, ∥b∥ = 20.5792. The solution can be found in Fig. 13.
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Figure 13: Enclosing ball: the solution of first benchmark.
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Figure 14: Enclosing ball: the descent of the norm of reduced gradient.

The second benchmark consists of the problems with various dimensions n. For
each dimension n, we generate 100 sets of random points and after solving the
problem for each set of n points, we take an average number of iterations for each
algorithm. These average numbers can be found in Fig. 15. During the solution, we
also track the number of Hessian multiplications using the same averaging process,
see Fig. 16.
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Figure 15: Enclosing ball: the average number of iterations depending on number
of points.

To construct the performace profiles, we take numbers of iterations and Hessian
multiplications from all problems generated in previous benchmark. The results can
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Figure 16: Enclosing ball: the average number of Hessian multiplications depending
on number of points.

be found in Fig. 17.
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Figure 17: Enclosing ball: performance profiles - number of iterations and number
of Hessian multiplications.

The problem of the smallest enclosing ball generates the objects with the similar
properties as in polytope distance problems. The Hessian matrix of the system is
SPS with large dimension of the kernel. This matrix is not regularized during outer
loop and the inner solver has to deal with the problem with SPS matrix. Despite
this fact, we are still able to solve the problem and our numerical results indicate
the efficiency of MPRGPS and SPG-QP algorithms.
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3.1.3 Projection onto intersection of hypercube and hyperplanes

In Dostál and Posṕı̌sil [34], we demostrate the efficiency of our active-set algorithms
by the evaluation of the projection of a point to the intersection of the unit cube and
unit sphere with hyperplanes. We generate random parameters of a point and the
hyperplanes for various dimensions n ranging from 5 to 5 ·106. Afterwards, we found
the projection of the point to the intersection of the unit cube and the hyperplanes
by solving the problem

minimize q(x) = 1
2∥x− a∥2 subject to ∥x∥∞ ≤ 1 and Bx = c ,

where a ∈ Rn is a random point, B ∈ Rm,n is a full row rank random matrix, c ∈ Rm

is a random vector, and ∥x∥∞ is the maximum norm defined for any x ∈ Rn by

∥x∥∞ := max{|x1|, . . . , |xn|}.

As a stopping criterion, we use

∥g̃ᾱ(x̄)∥ ≤ ε∥a∥ (3.8)

with ε = 10−4. In the thesis, we extend the results with other algorithms presented
in Section 2.
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Figure 18: Projection onto intersection of hypercube and 10 hyperplanes: the aver-
age number of iterations for varying dimension of the problem.

However, the solution process requires knowledge of a feasible point, which is
easy for one hyperplane or some special problems, but not in general, see Nocedal
and Wright [54]. The results in Fig. 18 and Fig. 19 demonstrate the complexity of
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Figure 19: Projection onto intersection of hypercube and 10 hyperplanes: the aver-
age number of Hessian multiplications for varying dimension of the problem.

our algorithms for solving the problems with m = 10 hyperplanes. The algorithms
perform almost constant number of iterations to solve the problem independently on
the dimension. To generate performace profiles, we take number of iterations and
Hessian multiplications from all problems generated in previous benchmark. The
results can be found in Fig. 20.
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Figure 20: Projection onto intersection of hypercube and 10 hyperplanes: perfor-
mance profiles - number of iterations and number of Hessian multiplications.
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Using the same methodology, we show linear complexity of our algorithm for
solving problem of projection of the point to the intersection of the unit sphere and
the hyperplanes

minimize q(x) = 1
2∥x− a∥2 subject to ∥x∥ ≤ r2 and Bx = c . (3.9)

Again, we generated random data of the problem and the results can be seen in
Fig. 21 and Fig. 22. The profiles are in Fig. 23. In this case, we can use a point of
the projection of the centre of sphere into given hyperplanes as an feasible point in
our equations. See next lemma.

Lemma 3.1.1
(Feasible point in example.)
Let

ΩH := {x ∈ Rn : Bx = c},
ΩS := {x ∈ Rn : xTx ≤ r2},

be sets from problem (3.9).
Then

xin := arg min
x∈ΩH

∥x− 0∥2 = BT (BBT )−1c (3.10)

satisfies
xin ∈ ΩH ∩ ΩS .

Proof: Notice that
Bxin = BBT (BBT )−1c = c ,

which implies xin ∈ ΩH .
We assume, that feasible set is non-empty, so we can choose xin2 such that xTin2xin2 ≤ r2

and Bxin2 = c. Furthermore, xin solves optimization problem (3.10), so we can write

xTinxin = ∥xin − 0∥2 ≤ ∥xin2 − 0∥2
2 = xTin2xin2 ≤ r2 .

□

In algorithms, we use projection onto sphere

ΩS := {x ∈ Rn : (x̃+ xin)T (x̃+ xin) ≤ r2}

defined by
PΩS

(x) := arg min
y∈ΩS

∥x− y∥ .
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In this case, we compute each component of projection onto ΩS by simple formula

PΩS
(x) :=

⎧⎨⎩x, if x ∈ ΩS ,
r

∥x+xin∥(x+ xin) − xin, if x /∈ ΩS .

Furthermore, we need to compute αf as the largest step-size in the proportional
step in MPGP, which does not cause leaving the set ΩS

αf := max{α ∈ R+ : x+ αp ∈ Ω}.

In this case, this coefficient can be computed using prescription (positive root of
quadratic equation which occurs in solving problem of intersection line and sphere)

αf :=
−pTy +

√
(pTy)2 − pTp(yTy − r2)

pTp
, y := x+ xin.
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Figure 21: Projection onto intersection of sphere and 10 hyperplanes: the average
number of iterations for varying dimension of the problem.

During our numerical experiments in problems with the intersection of hyper-
plane and sphere, we observe that the number of iterations of the algorithm decreases
while we increase the problem dimension. The reason is that if we use the relative
precision control based on the norm of right-hand side vector, then the problem is
easier to solve. See next lemma. We prove, that if we choose sufficiently large ε,
then the problem is solved in one iteration independently of the choice of initial
approximation.
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Figure 22: Projection onto intersection of sphere and 10 hyperplanes: the average
number of Hessian multiplications for varying dimension of the problem.
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Figure 23: Projection onto intersection of sphere and 10 hyperplanes: performance
profiles - number of iterations and number of Hessian multiplications.
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Lemma 3.1.2
(Precision in problem with hyperplane and sphere.)
Let

2r
√

∥BTB∥
∥b∥

≤ ε (3.11)

then
∥Bx0 − c∥ < ε∥b∥

for any x0 ∈ ΩS.

Proof: We suppose that ΩH ∩ ΩS ̸= ∅, therefore we can choose x̄ ∈ ΩH ∩ ΩS (for
instance the solution of the given problem (3.9)). Obviously

x0, x̄ ∈ ΩS ⇒ ∥x0 − x̄∥ ≤ 2r,

x̄ ∈ ΩH ⇒ Bx̄ = c.

Using this and the proposition of the lemma, we can estimate

∥Bx0 − c∥2 = ∥Bx0 − Bx̄∥2 = ⟨B(x0 − x̄), B(x0 − x̄)⟩

= (x0 − x̄)TBTB(x0 − x̄) = ⟨BTB(x0 − x̄), x0 − x̄⟩

≤ ∥BTB∥.∥x0 − x̄∥2 ≤ ∥BTB∥.4r2

≤ ∥BTB∥.4 ε2∥b∥2

4∥BTB∥ = ε2∥b∥2.

□

The numerical results show the efficiency of the algorithms. We show that the
projection problems can be solved by optimal QP algorithms very effectively. In
this case, the Hessian matrix of both outer and inner optimization problems is SPD
and the number of iterations is independent on the dimesion of the problem. These
results are mostly based on the property of outer SMALSE-M algorithm.
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3.2 Contact problems of mechanics
3.2.1 Membrane

In this section, we demonstrate the behaviour of the algorithms on the numerical
solution of simple two dimensional membrane deflection with contact. We consider
a square-shaped ideal membrane on ΩP := ⟨0, 1⟩×⟨0, 1⟩ from homogeneous material
with fixed boundary ΓN := ∂ΩP by homogeneous Dirichlet boundary condition, see
Fig. 24. We are interested in the deflection of the membrane desribed by function

x1

x2

f

l(x)

Figure 24: The contact problem of membrane and obstacle.

u : ΩP → R, which is caused by an acting force of the density f(x1, x2) := −1.
Furthermore, we also consider a rigid obstacle defined by function

l(x1, x2) :=

⎧⎪⎨⎪⎩ −1/10 for (x1, x2) ∈ ⟨0, p⟩ × ⟨0, 1⟩,
−1 for (x1, x2) ∈ (p, 1⟩ × ⟨0, 1⟩,

where p ∈ ⟨0, 1⟩ is a parameter of the problem. We consider non-penetration condi-
tion of the membrane and above-mentioned obstacle.
The problem in continuous form is given by

−∆u(x) = f(x) for x ∈ ΩP ,

u(x) = 0 for x ∈ ΓN ,
u(x) ≥ l(x) for x ∈ ΩP .

For the construction of discrete problem, we use popular Finite Element Method
(FEM, see Brenner and Scott [18] or Alberty et al. [5]) on regular square grid.
We denote the number of the division of a squere side by h ∈ N. We obtain an
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(d) p = 0.75

Figure 25: Solution of contact benchmark with the number of variables n = 2500
and several values of constraint parameter.

optimization problem

ū := arg min
u∈Ω

1
2u

TKu− fTu,

Ω := {u ∈ Rn : u ≥ l},
(3.12)

where n ∈ N denotes the number of FEM nodes and without any confusion, we
denoted u, l, f ∈ Rn the discretized forms of functions u, l, f : Ω → R. The stiffness
matrixK ∈ Rn,n is SPD because of given Dirichlet boundary condition. The problem
(3.12) is QP with bound constraints.
The solution of the problem (3.12) for several parameters p can be found in Fig.

25. The parameter p influences the number of active constraints in the solution of
the problem Fig. 26 , e.g. the size of set A(x̄) given by (1.30), and also the number
of iterations of the algorithms, see Fig. 28. In this case, we choose discretization
parameter h = 50 and we obtain a problem with n = 2500 variables. Performance
profiles can be found in Fig. 29.
In the second benchmark, we fix p = 0.5 and change the discretization parameter,
i.e. the dimension of the problem. The number of iterations can be found in Fig.
30 and the performance profiles in Fig. 31.

These results show the basic advantage of active-set methods. If the algorithm
combines the efficient solver for unconstrained problem on free set and an appro-
priate gradient projection method, it is able to solve both the unconstrained and
constrained problems with a small number of constraints very efficiently.

In the last benchmark, we fix p = 0.5 and choose the dimension n = 2500. In
this case λAmax = 7.9871, κ(A) = 615.8811, ∥b∥ = 0.2498. The descent of the reduced
gradient can be found in Fig. 32.

The algorithm MPRGP combines the most effective algorithm for solving un-
constrained QP problems, e.g. CG method, and projected SD method for solving
the problem on active set. Moreover, the number of iterations of MPRGP is the-
oretically independent of the problem dimension, and depends only on the largest
eigenvalue of stiffness matrix. In FEM, this number is bounded independently of
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Figure 26: Percentage of active con-
straints depending on obstacle param-
eter p.
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Figure 27: Largest eigenvalue for in-
creasing problem size n.
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Figure 28: Number of iterations for the problem size n = 2500 and several choices
of constraint parameter p.

the discretization. Practically, this effect can be seen on the results presented in
Fig. 30, where the number of iterations for varying dimension of the problem can
be found. This property of MPRGP is the result of the adaptive proportioning, e.g.,
the switching between solving the problem on free and active set.

Applications to contact problems of elasticity, including the transient contact
problems, problems with friction, and contact shape optimization problems dis-
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Figure 29: Performance profiles for the membrane problem with n = 2500 and
several values of obstacle parameter p.
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Figure 30: Number of iterations of algorithms for p = 0.5 and increasing problem
size.

cretized up to more than 4 · 107 nodal variables can be found in Dostál et al.
[32, 33, 31, 68, 63].
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Figure 31: Performance profiles for the membrane problem with p = 0.5 and several
values of problem dimension n.
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Figure 32: Membrane: the descent of the norm of reduced gradient on the problem
with p = 0.5, n = 2500.
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3.2.2 Semicoercive problem

In Dostál and Posṕı̌sil [35], we test a variant of MPRGP algorithm on the solution
of a 2D semi-coercive contact problem of elasticity with a floating body pressed
against the rigid obstacle. This problem has SPS Hessian matrix A and KerA with
small dimension. Matrix A has uniformly distributed spectrum, see Fig. 35. The
goal is to find the displacement of a homogeneous cylinder which is pressed into the
rigid corner by the gravity force as in Fig. 33. The cylinder is made of the material
with the density ρ = 7.82g/cm3, Young’s modulus E = 10 MPa, and Poisson’s ratio
ν = 0.3. The problem was discretized by the linear elements using the MESH2D
[37] library. The resulting mesh with the von Mises stress distribution is depicted in
Fig. 34. To describe the non-penetration conditions by the bound constraints, the
problem was rotated by −π/4.

FG

Figure 33: Pressed elastic cylinder
into the rigid corner by the gravity
force.
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Figure 34: The resulting mesh
with the von Mises stress distribu-
tion.

After the discretization, we obtain the vector of nodal forces b of the dimension
n = 660 and the norm ∥b∥ = 0.066588. The stiffness matrix A has three zero
eigenvalues, λ̂Amin = 0.16576, λAmax = 72, and the regular condition number κ̂(A) =
434.31. The distribution of the spectrum of A is depicted in Fig. 35.

The displacement uminimizes the energy function f(u) = 1
2u

TAu− bTu subject
to the non-penetration constraints.

We resolved also the class of problems obtained by the parametrization of our
benchmarks with E ∈ {1, 10, 100, 104, 106, 108}. The choice of this parameter in-
fluences the larges and the smallest eigenvalue of the Hessian matrix. However,
the condition number remains the same. We solve the problems with the relative
precision

∥gP (xk)∥ ≤ ε∥b∥, ε = 10−4 .
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Figure 35: Cylinder: Histogram of the Hessian spectrum of problem with E = 10.
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Figure 36: The decrease of ∥gP∥, (E = 10).

The results are in Table 11. We conclude that MPRGPS minimizes the cost function
the most efficiently and performs the best in the later stage of computations, see
Fig. 36.
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E = 1 E = 10 E = 102 E = 104 E = 106

λ̂Amin 7.2 72 720 720 ·102 720 ·104

λAmax 0.016 0.166 1.66 166 166 ·102

κ̂(A) 434.41 434.41 434.41 434.41 434.41
active 33 13 6 3 3
MPRGPS 251 / 284 482 / 498 424 / 435 806 / 813 856 / 862
PBBf 381 / 637 1601 / 2610 4831 / 7897 ∗ /∗ ∗ /∗

SPG-QP 955 / 956 3569 / 3570 ∗ /∗ ∗ /∗ ∗ /∗

APGD ∗ /∗ ∗ /∗ ∗ /∗ ∗ /∗ ∗ /∗

Table 11: ∗ – stopped after 10000 iterations. The numbers of iterations/matrix–
vector products to solve the floating body benchmark with varying E and relative
precision ε = 10−4. Number of active constraints in the solutions also provided.
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3.2.3 Problem with friction

In Posṕı̌sil [58] and Bouchala et al. [15], we presented variants of MPGP for solving
QP with separable spherical and elliptic constraints. Such problems arrise in linear
elasticity contact problems with isotropic and anisotropic friction, respectively.
In this section, we shortly review how the friction problem with non-quadratic term
can be transformed into QP with separable quadratic constraints. Afterwards, we
present results of numerical experiments performed on Anselm supercomputer.
Let us consider simple contact problem with given friction. The block of homo-
geneous material has prescribed zero displacements on boundary ΓD and imposed
traction F on ΓF . The part ΓC denotes the part of boundary that may get into con-
tact with rigid obstacle. The block is attracted to obstacle by incidence of gravity
force FG, see Fig. 37.

Figure 37: Contact problem with rigid obstacle and given friction.

We solve discretized form of the problem using Finite Element Method (FEM,
see e.g. Brenner and Scott [18] or Alberty et al. [5]). This technique evolves
optimization problem

ū := min
u∈ΩC

f(u) + jh(u), f(u) := 1
2u

TKu− fTu, jh(u) :=
mc∑
i=1

ψi∥Tiu∥, (3.13)

where N ∈ N is number of used nodes and n = 3N is number of variables, u ∈ Rn

is a vector of unknown displacements, ΩC := {u ∈ ΓC : uz ≥ −dC} is set of feasible
u, dC ∈ R is a distance between body and rigid obstacle, f : Rn → R denotes
function of total potential energy, K ∈ Rn,n is a symmetric-positive definite stiffness
matrix, f ∈ Rn is vector of internal forces resulting from the stresses imposed on the
structure during a displacement, jh : Rn → R is numerical integration of functional
describing the friction forces in the weak formulation of the problem, Ti ∈ Rmc,2 are
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formed by appropriately placed multiples of the unit tangential vectors in such way
that the jump of tangential displacement due to displacement u is given by Tiu, and
ψi ∈ R is slip bound associated with Ti.

At first, we denote mc ≤ N as number of FEM nodes in ΓC .
Since our problem has simple geometry, see Fig. 38, we can simply choose n :=
[0, 0,−1] as normal vector and t1 := [1, 0, 0], t2 := [0, 1, 0] as tangential vectors for
every FEM node from ΓC .

FEM node t
t

n

1

2

Figure 38: Normal and tangential vectors on ΓC .

For every contact node (i-th node from ΓC) is Ti ∈ R2,n given by zero matrix
with 1 in first row on appropriate x-coordinate of i-th node and in second row on
appropriate y-coordinate of i-th node. Then we assume that T :=

[
T T1 , . . . , T

T
mc

]T
is

the full rank matrix.
We can modify the non-differentiable term jh in (3.13) into (see Hlaváček et al.

[49])

jh(u) =
mc∑
i=1

max
∥τi∥≤ψi

τTi Tiu, (3.14)

where τi ∈ R2 are regulation variables. Moreover, we denote function and vector

L(u, λ) := f(u) + τTTu, τ := [τT1 , . . . , τTmc
]T , (3.15)

then conditions ∥τi∥ ≤ ψi can by written in the form√
τ 2

2i−1 + τ 2
2i ≤ ψi, i = 1, . . . ,mc, (3.16)

where τj is j-th component of τ .
We denote set of feasible τ as

Λτ :=
{√

τ 2
2i−1 + τ 2

2i ≤ ψi, i = 1, . . . ,mc

}
. (3.17)

After substitution (3.14) into (3.13) and using (3.15),(3.16) we get

ū := min
u∈ΩC

(f(u) + jh(u)) = min
u∈ΩC

(
f(u) +

mc∑
i=1

max
∥τi∥≤ψi

τTi Tiu

)
= min

u∈ΩC

sup
τ∈Λτ

L(u, τ).

(3.18)
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If we consider L(u, τ) as Lagrange function and τ as vector of Lagrange multipliers
(in notation (3.15)), we can use the duality theorem (see Dostál [26]) to reformulate
problem (3.18) and get

min
u∈ΩC

sup
τ∈Λτ

L(u, τ) = max
τ∈Λτ

min
u∈ΩC

L(u, τ). (3.19)

We include condition u ∈ ΩC by creating new Lagrange multipliers

max
τ∈Λτ

min
u∈ΩC

L(u, τ) = max
τ∈Λτ ,λC≥0

min
u∈Rn

L(u, τ) + λTC(Bu− c), (3.20)

where matrix B ∈ Rmc,n and vector c ∈ Rmc are constructed in such way, that

{u ∈ Rn : Bu ≤ c} = ΩC .

Let us suppose that in our problem with Dirichlet boundary conditions is f
strictly convex quadratic function. In next, we can use standard inversion K−1.
Due to geometry in our problem we can construct B very simply. B is zero matrix
with −1 in every i-th row (which is corresponding to i-th node in ΓC) on appropriate
z-coordinate of i-th node (see choice of normal vectors for nodes in ΓC).
Problem (3.13) is equivalent to the saddle point problem

(ū, λ̄) := arg max
λ∈Λ

min
u∈Rn

f(u) + λT (B̃u− c̃), (3.21)

where

λ :=

⎡⎢⎣ τ

λC

⎤⎥⎦ , B̃ :=

⎡⎢⎣ T

B

⎤⎥⎦ , c̃ :=

⎡⎢⎣ o

c

⎤⎥⎦
and

Λ := {[τ, λC ] ∈ R3mc :
√
τ 2

2i−1 + τ 2
2i ≤ ψi, i = 1, . . . ,mc, λC ≥ o}.

We solve problem (3.21) using dual formulation, dual function and KKT condi-
tions, see Lemma 1.3.7.
At first, we introduce the first KKT condition

Ku− f + B̃Tλ = o ⇒ u = K−1
(
f − B̃Tλ

)
(3.22)

and substitute this into Lagrange function (3.15) and make some simplifications.
We get

L(u, λ) = L
(
K−1(f − B̃Tλ), λ

)
= −1

2λ
T B̃K−1T Tλ+ λT B̃K−1f − 1

2f
TK−1f.
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We obtain function of only one variable λ. Since we want to find maximizer (see
saddle-point problem (3.21)), we omit the constant term and change signs. Then λ̄
solves minimization problem

λ̄ = min
λ∈Λ

Θ(λ), Θ(λ) := 1
2λ

TFλ− λTd, (3.23)

where we denoted
F := B̃K−1B̃T , d := B̃K−1f.

After solving minimization problem (3.23), the corresponding solution ū of primal
problem (3.13) can be evaluated using (3.22).
Obviously F ∈ R3mc,3mc is SPD and problem (3.23) is QP problem with separable
quadratic constraints combinated with bound constraints.

Figure 39: TFETI domain decomposition method with gluing conditions.

For the parallelization of the problem, we combine previous approach with TFETI
(Total Finite Element Tearing and Interconnection method, see Dostál et al. [33]),
which is a variant of the classical FETI (Finite Element Tearing and Interconnection
method, see Farhat and Roux [38]). In this non-overlaping domain decomposition,
we split the discretized problem into smaller parts, i.e. subdomains. The continuity
of the global solution throughout subdomains is enforced by the gluing conditions.
These conditions are represented by additional equality constraints, which express
the equality of the solution in corresponding nodes in neighbouring subdomains. In
dual formulation, these additional equality constraints entrain new set of Lagrange
multipliers, which are not constrained. The TFETI method differes from the orig-
inal FETI method in the way which is used to implement the Dirichlet boundary
conditions. TFETI uses the additional equality constraints to glue the subdomains
to the boundary whenever the Dirichlet boundary conditions are prescribed, see Fig.
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39.
Moreover, we use additional ideas of optimal solution of the problem, e.g. homoge-
nization, preconditioning by the projector, etc. The details can be found in Dostál
[26].
In our elementary numerical benchmark, we use regular FEM grid for both of the
discretization and the domain partitioning. The number of the domains in each di-
rection is denoted by [Nx, Ny, Nz] and number of elements in each domain is denoted
by [nx, ny, nz], respectively.

In our numerical experiment we consider steel brick (E = 2.105, µ = 0.33, ρ =
7.85.10−2) of size 2×1×1[m] in mutual contact with rigid obstacle. The displacement
and the friction are caused by the force F = [300, 600, 0]. We consider given (Tresca)
orthotropic friction between the brick and the obstacle. Let us recall that the Tresca
friction is a simple friction law which violates some natural physical principles, but
it can be used to define a mapping whose fixed point is a solution to the problem
with the Coulomb friction, see Panagiotopoulos [55]. To discretize the problem, we
choose NX = NZ = 2, NY = 4 and nx = ny = nz = 20. We obtain a primal problem
of dimension 444528 and dual problem of 54972 unknows. The feasible set of dual
problem is described by 3528 bound constraints and 3528 spherical constraints. Our
problem is a variant of the problem that is described in more detail together with
its discretization in Haslinger et al. [44].

Figure 40: The primal solution of the problem of linear elasticity with friction -
displacement.
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Figure 41: The dual solution of the problem of linear elasticity with friction. The
magnitude of Lagrange multipliers corresponding to friction conditions. The figure
shows the bottom side of original problem composition.

We have implemented MPGP, MPGP-BB, and SPG-QP in our PERMON tool-
box. PERMON is our newly emerging set of tools for Parallel, Efficient, Robust,
Modular, Object-oriented, Numerical simulations. It makes use of theoretical results
in advanced quadratic programming algorithms, discretization and domain decom-
position methods. The core solver layer of PERMON depends on PETSc and uses
its coding style. More informations about the implementation can be found in Hapla
[43]. The final solution of the problem was depicted using ParaView software [1],
see Fig. 40 and 41.

The numerical results can be found in Table 12. We solve the problem with
relative precision ϵ = 10−2∥b∥. In this table, we demonstrate the dependency of the
number of active constraints in the solution and the value of friction coefficient. If the
friction coefficient is small, then the number of active constraints is large. The PBB
algorithm, which was plugged into original MPGP algorithm, decreases the number
of projection steps. However, the PBB method is not convergent, see Section 2.4.2.
The same observation was proposed by Posṕı̌sil [58]. The SPG algorithm was not
able to solve the problem in less then 50000 iterations. From these results, we
suggest that the active-set algorithms are suitable for these problems.
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ϕ 10 30 100 500

co
ns

t. active bound 98% 98% 98% 99%

active quadratic 97% 89% 59% 48%

M
P

G
P

SMALBE-M 3 3 4 4

inner 15087 32877 35384 6148

hess. mult. 26575 34674 35999 7157

CG 11245 11830 8005 5145

CG-half 2818 1793 610 1003

projection 9690 19254 26769 1

M
P

G
P

-B
B

SMALBE-M 4 3 4 4

inner 15389 17417 12747 6148

hess. mult. 18747 20207 14322 7157

CG 11489 13258 9401 5145

CG-half 3353 2786 1570 1003

PBB 547 1373 1776 1

SP
G

-Q
P SMALBE-M 3 3 4 2

inner 50000∗ 50000∗ 50000∗ 50000∗

hess. mult. - - - -

Table 12: Number of constraints, and active constraints in the solution depends on
the friction coefficient.
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3.3 Granular dynamics
In this section, we will solve multibody dynamics problems. These problems may
contain from hundreds to billions of discrete rigid bodies interacting through con-
tact, impact, or mutual constraints, such as simulation of the movement of granular
matter, are one of the most challenging issues in computer-aided kinematics and
dynamics of mechanical systems. Many real-world systems contain or interact with
granular material, as granular material belongs among the most manipulated mate-
rials. For instance, such a material is utilized in a variety of fields, from sand, gravel,
or nanoscale powders to large boulders. Devices consisted of rigid bodies interacting
through frictional contacts and mechanical joints pose numerical solution challenges
because of the discontinuous nature of their motion, see Pfeiffer and Glocker [57].

Usually, the simulations are performed using discrete element method (DEM,
see for instance Cundall [21], Avci and Wriggers [9]; a penalty method where the
computation of interaction force is based on the kinematics of the interaction, some
representative parameters, and an empirical force law.

From our point of view, an other method is more interesting. It is more similar to
the solution of linear elasticity contact problems, because the problem is described
by a differential variational inequality (DVI, see Pang and Stewart [56], Renouf and
Alart [62], Heyn [47]). The method is sometimes referred to the Lagrange multiplier
approach. It enforces the non-penetration of rigid bodies via a constraint-based
approach. In the DVI method, a linear inequality constrained quadratic optimiza-
tion problem with symmetric positive semidefinite Hessian matrix must be solved
at each time step of the simulation. The unknowns in the problem are the normal
contact forces between interacting bodies. Moreover, if we consider a problem with
Coulomb friction, we obtain a quadratic programming problem with separable con-
ical constraints and the additional unknowns represent frictional contact forces, see
Anitescu and Tasora [8].

The efficient solution of inner optimization problem in DVI brings us to the de-
velopment of Quadratic programming (QP) algorithms. Our research in the solution
of particle dynamics simulations is motivated by the results achieved by Heyn et al.
[48]. Authors used the MPRGP algorithm to solve DVI efficiently in spite of the fact
that all theoretical results supporting the convergence of MPRGP were valid only
for the strictly convex cost functions. Only recently, we successfully extended the
theory and explained the convergence of the MPRGP for the problems with more
general convex quadratic cost function, see Dostál and Posṕı̌sil [35].

We are interested in simple simulations with sphere and box particles, but our
algorithms can be easily generalized to particle problems with general geometry.
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The first section consists of short review of the numerical solution concept and
time-stepping scheme. In this thesis, we do not develop new simulations techniques
or modify the mathematical modelling process. However, we are interested in nu-
merical aspect of the inner QP optimization problem and our proofs of the solvability
are based on the object structures. Therefore, we decided to present short review.
The formulation of the problem and derivation of optimization problem can be found
in the second subsection. The problems with friction are introduced in the third
subsection. The presented theory and ideas in these subsections can be consid-
ered as a short review of Heyn [47]. Other details of computational dynamics and
computer-aided kinematics can be studied, e.g., from Shabana [67] and Haug [45].
Section 3.3.4 introduces the mathematical aspect of the optimization problem solv-
ability and other theoretical aspects.
The last subsection includes the numerical experiments and results. We have imple-
mented algorithms in C programming language with CUDA library, and afterwards
we perform simulations on GPU card. The problem of granular dynamics is ideal
for solving on such a massively parallel architectures. However, the aim of the the-
sis is not to develop optimal implementation, but the development of algorithms.
Therefore, we manage the problems constisting from small number of partlicles.
Much more efficient implementation was presented by the team from Simulation-
Based Engineering Lab (SBEL) University of Wisconsin-Madison in Chrono::Engine
software [3].

3.3.1 Time-stepping scheme

In this section, we follow Heyn [47] and review the basic notations and ideas.
Let us consider the system of nb ∈ N rigid bodies (particles) in the vector space
{(x, y, z) ∈ R3}. Each particle has 6 degrees of freedom; location of the centre of
gravity [rx, ry, rz]T ∈ R3 and the unit quaternion of rotation [e0, e1, e2, e3]T ∈ R4. In
this case, we can use also Euler angles to describe the rotation of the bodies, but
such an approach evokes the evaluations of goniometric functions, which have to be
performed numerically. This is the reason why quaternions are much more suitable;
the rotation matrix can be created using simple operations such as multiplications
and additions. Moreover, there exists a simple formula of the mapping matrix
between position and velocity. More informations about computational dynamics
can be found in Haug [45] and Heyn [47].
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Let us denote

q(i) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx

ry

rz

e0

e1

e2

e3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R3+4, v(i) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṙx

ṙy

ṙz

ω̇ϕ

ω̇θ

ω̇ψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R3+3, i = 1, . . . , nb

as a vector of generalized position and generalized velocities of body T(i) in given
time t. Here, ω̇ ∈ R3 denotes angular velocity in Euler angles.
We compose the vector of generalized positions and velocities from the vectors of
positions and velocites from all bodies in the system and define

q := [qT(1), . . . , q
T
(nb)]T ∈ R7nb ,

v := [vT(1), . . . , v
T
(nb)]T ∈ R6nb .

There exists a linear mapping between derivative of position vector and vector of
velocities Gi(q(i)) : R6 → R7 defined by prescription

Gi(q(i)) :=
[
I,

1
2E

T
]
, E :=

⎡⎢⎢⎢⎢⎣
−e1 e0 −e3 e2

−e2 e3 e0 −e1

−e3 −e2 e1 e0

⎤⎥⎥⎥⎥⎦ , q̇(i) = Gi(q(i))v(i) .

The basic time-stepping schema (can be regarded as one step of implicit Euler
method for the discretized First Newton law) has form

q(t+h) = q(t) + h.q̇(t) ,

where h is a sufficiently small time step and q(t) is a value of q in time t.

Let us suppose that we have already computed the position in time-step t and
now, the problem is to find the vector of velocities v(t+h), which increment subject
to v(t) depends on

• the mass of each body,

• external forces Fext(t, q, v),
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• contacts and other limiting conditions.

This situation is described by the second Newton law, i.e.

Mv̇ = FC + Fext M(v(t+h) − v(t)) = h(Fext + FC) , (3.24)

where

• M ∈ R7nb,7nb is generalized mass matrix,

• FC ∈ R7nb is a vector of forces induced by contact constraints,

• Fext ∈ R7nb is a vector of external forces.

3.3.2 Contacts

In this section, we review the determination of the contact force, which influences
the change of the velocity.
Let us consider the contact between the bodies TA and TB (that means the body
TA is in the contact with the body TB, the body TA has effect to the body TB - the
order is important), see Fig. 42.
Let us denote nA(C) the unit outward normal of the body TA in the contact point

TA

TB
F
A

C F
B

Figure 42: Contact between two bodies.

C in global coordinate system. Then the body TA effects on the body TB by force

FB := γ̂nA(C) ,

where γ̂ ≥ 0 is unknown size of the force. This force evocates the change of the
position of the body TB (the components of the generalized velocity vector corre-
sponding to the position of gravity centre).
Analogously, the force

FA := −γ̂nA(C)
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effect to the body TA.
Accordingly, the change of rotation of the body TB (the components of the general-
ized velocity vector corresponding to the rotation) is effected by associated torque

MB := CB × FB ,

where CB is the contact point C in local coordinate system of the body TB (this
coordinate system has the centre in TB and coordinate axis correspond to coordinate
system of this body with zero rotation). Using some manipulations, we obtain

MB = CB × FB = γ̂(CB × nA(C)) = γ̂ĈBnA(C) ,

where

ĈB :=

⎡⎢⎢⎢⎢⎣
0 −CB

z CB
y

CB
z 0 −CB

x

−CB
y CB

x 0

⎤⎥⎥⎥⎥⎦ ∈ R3,3

is a vector product matrix.
Analogously, the torque

MA := CA × FA = −γ̂ĈAnA(C)

is acting to the body TA.
For the sake of simplicity, let us define the vector

dAB :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−nA(C)
−ĈAnA(C)
nA(C)

ĈBnA(C)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R4·3 . (3.25)

Sometimes this vector is reffered as the tangent space generator. It is used to trans-
form the contact forces from local to global frame.
If the problem consists of nc ∈ N contacts (it will always consist of more contact -
even if there are only two bodies, the number of contacts is two - contact of TA with
TB and contact of TB with TA), the column vectors di, i = 1, . . . , nc can be formed
into the block matrix D ∈ R6nb,nc and the vector of the unknown sizes of contact
forces is given by γ̂ = [γ̂1, . . . , γ̂nc ]T ∈ Rnc . See following Example 3.3.1.

If the size of the force γ̂ is known, then the resulting change of the velocity can
be computed by (by inducting previous observations to (3.24))

M(v(t+h) − v(t)) = hFext +Dγ ,

where γ := hγ̃.
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Example 3.3.1
Let us consider the system of three bodies TA, TB, TC . The vector of generalized
positions is given by q = [qTA, qTB, qTC ]T ∈ R3·7 and the vector of generalized velocities
by v = [vTA, vTB, vTC ]T ∈ R3·6. Let positions of the bodies be the same as in Fig. 43.

TA

TB

TC

C

C

AB

BC

nBA

nAB

nCB

nBC

Figure 43: Example of the contact of more bodies.

In figure, we denoted these objects:

• TA, TB, TC - the objects (bodies, particles),

• nAB, nBA, nBC , nCB - the unit outward normals; for example nAB denotes the
unit outward normal of the body TA in the contact point CAB,

• CAB, CBC - contact points in global coordinates (obviously CAB = CBA, CBC =
CCB).

Moreover, we denote by CA
AB the coordinates of the contact point CAB in local co-

ordinate system of the body TA and similarly we denote CB
AB, C

B
BC , C

C
BC .

In this case, we are searching for the sizes of four unknown forces:

• the force, which the body TA applies to the body TB resulting from the contact
between TA and TB,

• the force, which the body TB applies to the body TA resulting from the contact
between TB and TA,

• the force, which the body TB applies to the body TC resulting from the contact
between TB and TC ,

• the force, which the body TC applies to the body TB resulting from the contact
between TC and TB.
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Thus we are searching for γ = [γAB, γBA, γBC , γCB]T ∈ R4.

The matrix D ∈ R3·6,4 has a block structure

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−nAB nBA 0 0
−C̃A

ABnAB −C̃A
ABnBA 0 0

nAB −nBA −nBC nCB

C̃A
ABnAB −C̃B

ABnAB −C̃B
BCnBC C̃B

BCnCB

0 0 nBC −nCB
0 0 C̃C

BCnBC −C̃C
BCnCB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.26)

The non-penetration condition of the bodies TA and TB can be described by gap
function Φ : R7+7 → R. In the simplest case, it can be considered as the ”distance
between bodies” (the minimum distance between the points of the boundary of the
first and the second body).
It holds

• Φ([qA, qB]) = 0 if the bodies are in contact,

• Φ([qA, qB]) > 0 if the bodies are not in contact,

• Φ([qA, qB]) < 0 if the bodies penetrate each other.

For the size of the affecting force γ, it holds analogically

• γ ≥ 0 if the bodies are in contact (the force exists),

• γ = 0 if the bodies are not in contact (the force does not exist).

Merging two last observations, we obtain the complementarity condition

0 ≤ Φ(q) ⊥ γ ≥ 0 . (3.27)

Instead of these conditions, we can consider more numerically stable conditions (see
Anitescu [6])

0 ≤ 1
h

Φ(q) +DTv(t+h) ⊥ γ ≥ 0 . (3.28)

The next theorem shows how to reformulate the problem with these conditions to
the quadratic problem with bound constraints.
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Lemma 3.3.1
(about reformulation of the problem)
The solution of the optimization problem

min
γ≥0

1
2γ

TNγ + rTγ , (3.29)

where

N := DTM−1D, (3.30a)

r := 1
h

Φ +DTM−1k, (3.30b)

k := Mv(t) + h.Fext, (3.30c)

is equivalent to the solution of original problem

M(v(t+h) − v(t)) = hFext +DTγ, (3.31a)
1
h

Φ(q) +DTv(t+h) ≥ 0, (3.31b)
1
h

Φ(q) +DTv(t+h) ⊥ γ, (3.31c)

γ ≥ 0. (3.31d)

Proof: The Lagrange function of the optimization problem (3.29) is given by

L(γ, λ) = 1
2γTNγ + rTγ − λTγ,

so the appropriate Karush-Kuhn-Tucker conditions have form

Nγ + r − λ = 0, (3.32a)
γ ≥ 0, (3.32b)
λ ≥ 0, (3.32c)

γTλ = 0. (3.32d)

Conditions (3.32b) and (3.31d) are the same. From condition (3.32a), we can directly
derive

λ = Nγ + r (3.33)
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and together with (3.30) and adaption to (3.32d), we obtain

0 = γTλ = γT (Nγ + r)

= γT (DTM−1Dγ + 1
hΦ + DTM−1k)

= γT (DTM−1Dγ + 1
hΦ + DTM−1(Mv(t) + h.Fext))

= γT ( 1
hΦ + DT (v(t) + M−1Dγ + h.M−1Fext)).

Furthermore, using (3.31a) we get

0 = γT ( 1
h

Φ + DT (v(t+h) − v(t)),

which is in fact condition (3.31c).
Finally, we can adapt (3.33) into (3.32c) and we get

0 ≤ λ = Nγ + r = 1
h

Φ + DT v(t+h) ,

which is condition (3.31b). □

So, the algorithm in every time-step has the form of Algorithm 13.

3.3.3 Friction

In problems with friction, the situation is quite similar. Let us consider two bodies
TA and TB in the contact. Then, we can denote

• n ∈ R3 unit outward normal in global coordinates,

• u,w ∈ R3 unit orthogonal direction vectors of contact plane in global coordi-
nates.

Obviously, {n, u, w} is a set of orthonormal vectors and {u,w} forms the basis of
tangent space.

Friction force affected in contact point to the body TA can be expressed by

F = Fn + FT = γnn+ γuu+ γww = Sγ ,

where

• Fn = γnn ∈ R3 is normal component of the contact force,

• FT = γuu+ γww ∈ R3 is tangent component of the contact force,

• γn > 0 is a size of normal component of the contact force,
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Algorithm 13: Time-stepping schema.

Given t, h, q(t), v(t).
find contacts
if there is a contact

set up N, r from contacts
solve the problem

γ := arg min
γ≥0

1
2γ

TNγ + rTγ

v(t+h) := v(t) +M−1(hFext +Dγ)
else

v(t+h) := v(t) + hM−1Fext

endif

q(t+h) := q(t) + h.G(q(t))v(t)

Return q(t+h), v(t+h).

• γu, γw ∈ R are sizes of tangent components of the contact force,

• γ := [γn, γu, γw]T ∈ R3 is a vector of unknown component sizes,

• S := [n, u, w] ∈ R3,3 is orthogonal matrix.

Relation between components of the friction force can be described by Coulomb
friction model (3.34), see Anitescu and Potra [7],

γn ≥ 0, Φ(q) ≥ 0, Φ(q)γn = 0 , (3.34a)√
γ2
u + γ2

w ≤ µγn , (3.34b)

∥vT∥
(
µγn −

√
γ2
u + γ2

w

)
= 0 , (3.34c)

⟨FT , vT ⟩ = −∥FT∥.∥vT∥ . (3.34d)
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Lemma 3.3.2
(about reformulation of the problem with friction)
The solution of the optimization problem

min
γ∈Ω

1
2γ

TNγ + rTγ , (3.35)

where

N := DTM−1D,

r := [ 1
h
Φ, 0, 0]T +DTM−1k,

k := Mv(t) + h.Fext,

Ω := Ω1 × · · · × Ωnc, Ωj := {[x, y, z]T ∈ R3 :
√
y2 + z2 ≤ µix}

is equivalent to the solution of original problem

M(v(t+h) − v(t)) = hFext +DTγ

with conditions (3.34).

Proof: See Heyn [47]. □

3.3.4 Properties and solvability

Because we are mostly interested in the solution of inner optimization problems
(3.29) and (3.35), we should discuss the solvability of these problems. In Heyn [47],
one can find this physical explanation:

For example, consider a rigid symmetric four-legged table resting on
a perfectly flat rigid plane. The vertical reaction forces at the four legs
are non-unique. For example, if the weight of the table is 100N, it is
possible that the vertical reaction force at each leg is 25N. However, it is
equally possible that two diagonally opposite legs have reaction forces of
30N each, while the other pair of diagonally opposite legs have reaction
forces of 20N each. In fact, there are infinitely many sets of reaction
forces which satisfy the equations corresponding to the case of the rigid
table resting on a rigid plane.

This is the reason, why the inner optimization problem has always solution (from
physical point of view) and in some cases, it can have infinite number of solutions.
In the thesis, we focus on the mathematical aspects of the solvability.
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The problem without friction
In this section, we prove that the optimization problem in particle dynamics

without friction is QP problem with right hand-side vector from image of the Hessian
matrix N .

Lemma 3.3.3
(property of QP in problems without friction)
The optimization problem (3.29) is a QP problem with SPS Hessian and right-

hand side vector from the image of Hessian, i.e.

∀x ∈ Rnc : ⟨Nx, x⟩ ≥ 0, (3.36a)
r ∈ ImN. (3.36b)

Proof: At first, we prove (3.36a). It is necessary to show that ∀x ∈ Rnc : ⟨Nx, x⟩ ≥ 0.
We use that M ∈ R6nb,6nb is SPD. Therefore, the inverse is also SPD and it induces the
norm in R6nb . Furthermore, we can write

⟨Nx, x⟩ = ⟨DTM−1Dx, x⟩ = ⟨M−1Dx, Dx⟩ = ∥Dx∥2
M−1 ≥ 0 .

If we take a look at the prescription of right-hand side vector

r := 1
h

Φ + DTM−1k ,

we can use Lemma 1.3.1 and simplify the proof of (3.36b) into the proof of

Φ ∈ Im DT . (3.37)

At first, let us define the vector spaces V, W ⊂ Rnc

V := span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−1

0

0
...

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

−1
...

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, . . .

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0
...

1

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, W := span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

0

0
...

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

1
...

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, . . .

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0
...

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

We take a better look into the structure of matrix D ∈ R6nb,nc whose blocks are given
by (3.25). This matrix always consists of the pairs of contacts - the contact between
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the body TA and the body TB (denoted by contact AB) as well as the contact between
body B and A (denoted by contact BA), see Example 3.3.1. For the sake of simplicity we
consider the construction of matrix D ∈ R6nb,nc with consecutive collocation of the contact
pairs. Then each pair of columns corresponds to the pair of contacts and the nonzero rows
corresponding to the indexes of the bodies in this contact is given by prescription (3.25),
i.e. the filled submatrix for one pair of contacts AB and BA has structure

DR,C =

⎡⎢⎢⎢⎢⎢⎢⎣
−nA(CAB) nB(CBA)

−C̃A
ABnA(CAB) C̃A

ABnB(CBA)

nA(CAB) −nB(CBA)

C̃B
ABnA(CAB) C̃B

BAnB(CBA)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

R := {indexes of vA, indexes of vB},

C := {index of contact AB, index of contact BA} .

(3.38)

The key ingredient of the proof is a small observation; the contact forces in the contact
point CAB = CBA have opposite direction and the unit outward normals of the bodies in
the contact are also opposite. This observation implies nA = −nB.
Therefore, the submatrix (3.38) can be written in simplier form

DR,C =

⎡⎢⎢⎢⎢⎢⎢⎣
−nA −nA

−C̃AnA −C̃AnA

nA nA

C̃BnA C̃BnA

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where we used notations nA := nA(CAB) = −nB(CBA) and CA := CA
AB = CA

BA, CB :=
CB
AB = CB

BA.
Using this simple structure, it is easy to check that

∀v ∈ V : Dv = 0,

∀w ∈ W \ {0} : Dw ̸= 0.

Furthermore, we proved that V ⊂ Ker D and W ∩ Ker D = {0}. Using this and Theorem
1.3.1, we can write

Ker D ⊃ V ⊥ W

W ∩ Ker D = {0}

⎫⎬⎭ ⇒ W ⊥ Ker D ⇒ W ⊂ Im DT .

To prove (3.37), notice that Φ ∈ W because the gap function has the same value for both
contacts AB and BA (the distance between bodies TA and TB is the same as distance
between bodies TB and TA).

□
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Example 3.3.2
Let us demonstrate the basic ideas from the previous proof on the matrix from
Example 3.3.1. From the Fig. 43, we can suggest

nAB = −nBA and nBC = −nCB ,

so the matrix (3.26) can be written in the form

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−nAB −nAB 0 0
−C̃A

ABnAB −C̃A
ABnAB 0 0

nAB nAB −nBC −nBC
C̃A
ABnAB C̃A

ABnAB −C̃B
BCnBC −C̃B

BCnBC

0 0 nBC nBC

0 0 C̃C
BCnBC C̃C

BCnBC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We choose arbitrary two nonzero vectors

v := [α,−α, β,−β]T ∈ V , α, β ∈ R,

w := [γ, γ, δ, δ]T ∈ W , γ, δ ∈ R.

These vectors are orthogonal

⟨v, w⟩ = α.γ + (−α).γ + β.δ + (−β).δ = 0.

Moreover, multiplying these vectors by matrix D we get

Dv =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−nAB −nAB 0 0
−C̃A

ABnAB −C̃A
ABnAB 0 0

nAB nAB −nBC −nBC
C̃A
ABnAB C̃A

ABnAB −C̃B
BCnBC −C̃B

BCnBC

0 0 nBC nBC

0 0 C̃C
BCnBC C̃C

BCnBC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α

−α
β

−β

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Dw = D

⎡⎢⎢⎢⎢⎢⎢⎢⎣

γ

γ

δ

δ

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2γnAB
−2γC̃A

ABnAB

2γnAB − 2δnBC
2γC̃A

ABnAB − 2δC̃B
BCnBC

2δnBC
2δC̃C

BCnBC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Since nAB ̸= o, nBC ̸= o and γ, δ are not both equal to zero, we can suggest that
Dw ̸= 0.

Theorem 3.3.1
(about solvability of problems without friction)
The optimization problem (3.29) has always a solution.

Proof: The statement is easy corollary of Lemma 3.3.3, Lemma 1.3.4 and classical
results given by Frank and Wolfe [39]. Since the Hessian matrix is SPS, there exists a
possibility of infinite number of solutions. □

The problem with friction
In this section, we generalize our results from previous section to problems with

friction.

Lemma 3.3.4
(property of QP in problems with friction)
The optimization problem (3.35) is a QP problem with SPS Hessian and right-

hand side vector from the image of Hessian, i.e.

∀x ∈ Rnc : ⟨Nx, x⟩ ≥ 0, (3.39a)
r ∈ ImN. (3.39b)

Proof: The first part of the proof is the same as in non-friction case, see proof of Lemma
3.3.4. To prove (3.39b) it is necessary to show that

ϕ ∈ Im DT . (3.40)

The following ideas are similar to the proof on non-friction case. We consider bodies
TA, TB in contact. In fact, there exists two contacts; the contact of body TA with TB and
contact between TB and TA. In this case, the submatrix of matrix D which corresponds
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to these contacts is given by

DR,C =

⎡⎢⎢⎢⎢⎢⎢⎣
−SAB SBA

−C̃A
ABSAB C̃A

ABSBA

SAB −SBA

C̃B
ABSAB C̃B

BASBA

⎤⎥⎥⎥⎥⎥⎥⎦ ,

R := {indexes of vA, indexes of vB},

C := {indexes of {γABn , γABu , γABw , }, indexes of {γBAn , γBAu , γBAw , }},

SAB := [nA(CAB), uA(CAB), wA(CAB)]

SAB := [nB(CBA), uB(CBA), wB(CBA)] .

(3.41)

Similarly to non-friction case CAB = CBA and nA = −nB, see Fig. 44. Moreover, the

Figure 44: Tangent space in problems with friction.

tangent plane of both contacts is the same. This implies that the orthogonal tangent space
generators {uA, wA} and {uB, wB} represent orthogonal basis of the same subspace of R3.
Therefore, there exists a matrix K ∈ R3,3 such that

SAB = −SBAK. (3.42)

This matrix represents the rotation or the flip of the orthogonal basis {nA, uA, wA} to the
basis {nB, uB, wB}. Since SAB = [nA, uA, wA], and SBA = [nB, uB, wB] are orthogonal,
we can compute K from (3.42)

K = −STBASAB = −

⎡⎢⎢⎢⎣
−nTA

uTB

wT
B

⎤⎥⎥⎥⎦ [nA uA wA] =

⎡⎢⎢⎢⎣
1 0 0

0 −⟨uB, uA⟩ −⟨uB, wA⟩

0 −⟨wB, uA⟩ −⟨wB, wA⟩

⎤⎥⎥⎥⎦ . (3.43)
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Using these observations, we can write (3.41) in form

DR,C =

⎡⎢⎢⎢⎢⎢⎢⎣
−SA −SAK

−C̃ASA −C̃ASAK

SA SAK

C̃ASA C̃BSAK

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.44)

where we used notations SA := SAB = −SBAK, CA := CA
AB = CA

BA, and CB := CB
AB =

CB
BA.

Now we are ready to introduce vector spaces

V := span { [1, 0, 0, −1, 0, 0 0, 0, 0, 0, 0, 0, . . . 0, 0, 0, 0, 0, 0]T ,

[0, 0, 0, 0, 0, 0 1, 0, 0, −1, 0, 0, . . . 0, 0, 0, 0, 0, 0]T ,

. . .

[0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, . . . 1, 0, 0, −1, 0, 0]T }

W := span { [1, 0, 0, 1, 0, 0 0, 0, 0, 0, 0, 0, . . . 0, 0, 0, 0, 0, 0]T ,

[0, 0, 0, 0, 0, 0 1, 0, 0, 1, 0, 0, . . . 0, 0, 0, 0, 0, 0]T ,

. . .

[0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, . . . 1, 0, 0, 1, 0, 0]T }.

Notice that for any α ∈ R it holds

K

⎡⎢⎢⎢⎣
α

0

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 0

0 −⟨uB, uA⟩ −⟨uB, wA⟩

0 −⟨wB, uA⟩ −⟨wB, wA⟩

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

α

0

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
α

0

0

⎤⎥⎥⎥⎦
and afterwards, using (3.44) it is easy to check that

∀v ∈ V : Dv = 0,

∀w ∈ W \ {0} : Dw ̸= 0.

Finally, we can use Theorem 1.3.1 and the same arguments as in the non-friction case

Ker D ⊃ V ⊥ W

W ∩ Ker D = {0}

⎫⎬⎭ ⇒ W ⊥ Ker D ⇒ W ⊂ Im DT .

To prove (3.40), notice that Φ ∈ W because the gap function has the same value for both
contacts AB and BA (the distance between bodies TA and TB is the same as distance
between bodies TB and TA). □
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Theorem 3.3.2
(about solvability of problems with friction)
The optimization problem (3.35) has always a solution.

Proof: The statement is easy corollary of Lemma 3.3.4, Lemma 1.3.4, and classical
results given by Frank and Wolfe [39]. Since the Hessian matrix is SPS, there exists a
possibility of infinite number of solutions. □

Independence of solution
Optimization problems (3.29) and (3.35) can have infinite number of solutions.

The next lemma shows, that it is not important which solution we choose to update
velocity. Therefore, the aim of the solver is to find arbitrary solution of the problem.

Lemma 3.3.5
(independence of solution and velocity.)

The velocity in the next time-step v(t+h) given by Algorithm 13 is independent
of the choice of the solution of the optimization problem (3.29) in non-friction
case, or (3.35) in friction case.

Proof: Let γ̄1, γ̄2 denote different solutions of optimization problem (3.29) or (3.35).
Then appropriate velocity in the next time-step given by Algorithm 13 depending on these
solutions is given by

v(t+h)(γ̄1) = v(t) + M−1(hFext + Dγ̄1),

v(t+h)(γ̄2) = v(t) + M−1(hFext + Dγ̄2).

We examine the difference of these velocities

v(t+h)(γ̄1) − v(t+h)(γ̄2) = M−1D(γ̄1 − γ̄2) .

Since the difference of the solutions lies in the Ker N (see Lemma 1.3.5) and Ker N = Ker D
(see Lemma 1.3.1), we can write

v(t+h)(γ̄1) − v(t+h)(γ̄2) = M−10 = 0 .

□
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3.3.5 Numerical experiments

In the thesis, we present the numerical results on two simple benchmarks. The first
one is without friction and the second one is with the particles with various friction
coefficients.
Algorithm was implemented in C programming language with CUDA environment
[4]. For contact detection, we are using our own implementation of the Moving
Bounding-Box algorithm [64] and for generating the images, we are using POV-Ray
Software [2].
In our experiments, we demand the relative stopping tolerance

∥gP (γ)∥ ≤ 10−4 · ∥r∥.

We compare MPRGPS, PBBf, SPG-QP and APGD. Algorithms settings can be
found in Table 14.

all solvers ᾱ = 1.95/λ̃Amax, x
0 = 0, εin = 10−4, itmax = 104

MPRGPS Γ = 1
PBBf K = 10, x1 = PΩ(x0 − ᾱg0)
SPG-QP m = 10, γ = 0.1, σ2 = 0.9999, α0 = ᾱ

APGD L = λ̃Amax

Table 14: Algorithms settings in granular dynamics benchmarks.

In the first benchmark without friction, we consider a system of 32810 spherical
particles. During the first stage of the simulation, small particles are scattered into
simple box represented by five walls. The initial position of the particles and final
position can be found in Fig. 45 and Fig. 46. Afterwards in t = 0.3 s, we add
large spherical particle to study the behaviour of the impact. The material of the
bodies is represented by density ρ = 2800 kg · m−3. Small particles have radius
r = 0.011 m and the large one r2 = 0.15 m. The stepsize of the time-stepping
scheme is h = 8 · 10−4 s.

The number of bodies in the system and the number of contacts can be found in
Fig. 47. The number of iterations depends on the dimension of the inner problem,
see Fig. 48. The dimension of inner minimization problem with bound constraints
is equal to the number of contacts. During our simulation, not all algorithms were
able to solve the problem using 15000 iterations, so we decided to stop them. The
next step of the simulation was computed by SPG-QP, which has the best efficiency.
The perfomance profiles were constructed from all optimization problems during the
simulation and can be found in Fig. 49.



141

Figure 45: The state of the first benchmark in t = 0.136 s, 0.4 s, 0.56 s.

Figure 46: The state of the first benchmark in t = 0.64 s, 0.8 s, 1.44 s.
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Figure 47: The number of bodies and contacts in the system during the first simu-
lation without friction.
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Figure 48: The number of iterations during the first simulation without friction.
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Figure 49: Performance profiles - number of iterations and number of Hessian mul-
tiplications.

In the second benchmark, we sprinkle 24435 spherical particles into one fixed
obstacle. These particles are divided into tree groups, see Fig. 53, Fig. 54, and
Fig. 55. Particles in each group have the different friction coefficient µ1 = 0.1 (red),
µ2 = 0.3 (blue), and µ3 = 0.5 (green). The material of the bodies is represented by
density ρ = 2800 kg · m−3 and the particles have radius r = 0.01 m. The stepsize of
the time-stepping scheme is h = 8 · 10−4 s.

The number of bodies in the system and the number of contacts can be found in
Fig. 50. In this case, the dimension of inner minimization problem with separable
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conical constraints is three times larger then the number of contacts. In fact, the
number of constraints is equal to the number of contacts. Number of performed
iterations can be found in Fig. 51 and performance profiles in Fig. 52. In this case,
we set the maximum iterations to 10000.
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Figure 50: The number of bodies and contacts in the system during the second
simulation with friction.
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Figure 51: The number of iterations and Hessian multiplications during the second
simulation with friction.

The number of iterations depends on the dimension of the problem. In the non-
friction case, the constraints of QP problem consist of bound constraints and the
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Figure 52: Performance profiles - number of iterations and number of Hessian mul-
tiplications.

best algorithms (subject to the number of iterations and the number of Hessian ma-
trix multiplications) are MPRGP and SPG-QP. These algorithms are able to solve
all given optimization problems from simulation. In friction case, the active-set al-
gorithm MPGP fails to solve the problem because of the large number of projection
steps with constant step-lenght. Furthermore, let us notice, that in APGD algo-
rithm, we are using the constant Lipschitz constant, i.e. the largest eigenvalue. For
this estimation, we are using power method. Unfortunatelly, our implementation on
GPU is not able to find the largest eigenvalue with high precision, which is impor-
tant for APGD. Heyn et al. [48] are much more successfull with adaptive/heuristic
line-search methods for Lipschitz constant estimation.
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Figure 53: The state of the second benchmark in t = 0.11 s.

Figure 54: The state of the second benchmark in t = 0.85 s.

Figure 55: The state of the second benchmark in t = 1.76 s.
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Conclusions

In the thesis, we have reviewed the fundamental concepts of quadratic programming
and we have presented algorithms for solving the minimization problem with con-
vex quadratic function and closed convex feasible set. These optimization problems
appear in practical applications. We performed numerical experiments on solving
geometrical problems, linear elasticity contact problems, and multi-body dynamics
problems. We have implemented algorithms in Matlab environment, C program-
ming language with Cuda toolkit and PETSc toolkit. We have designed practical
benchmarks and we have solved these benchmarks on personal computer, GPU card,
and Anselm supercomputer.
We have focused on active set methods and projected gradient methods. Our results
suggest that each type of presented algorithms has both advantages and disadvan-
tages and the performance depends on the problem properties. If the number of
unconstrained components of solution vector is dominating over the constrained
part, then the active set methods are able to deal with this part very efficiently. On
the other hand, projected gradient methods are effective on the problems with fea-
sible set described by non-linear constraints, such as separable conical constraints.
The combination of these two approaches suggests new type of methods.
The properties of the optimization problem are crucial. In quadratic programming,
the Hessian matrix, the right-hand side vector, and the constraint functions deter-
mine the problem solvability and defines the conditioning of the problem. In the
thesis, we have reviewed the basic theory and we have presented our own theoretical
results. For instance, we show that the inner optimization problem of multi-body
dynamics has always solution in both of non-friction and friction case.
Our results show that the black-box convex programming algorithms can be also
used for solving quadratic programs. Furthermore, the efficiency of these methods
can be extended using the results from classical quadratic programming algorithms.
This issue is the aim of the further development.



148



149

Author’s bibliography

Journal
• Bouchala J., Dostál Z., Kozubek T., Posṕı̌sil L., Vodstrčil P.: On the solution
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• Dostál Z., Posṕı̌sil L.: Minimization of the quadratic function with semidef-
inite Hessian subject to the bound constraints, accepted in Computers and
Mathematics with Applications (IF 1.996), 2014.
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• Posṕı̌sil L., Dostál Z.: Active-set based quadratic programming algorithm for

solving optimization problems arising in granular dynamics simulations, IC-
CCM15, Hannover, 2015.
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[31] Z. Dostál, T. Kozubek, T. Brzobohatý, A. Markopoulos, and O. Vlach. Scalable
tfeti with optional preconditioning by conjugate projector for transient contact
problems of elasticity. Computer methods in applied mechanics and engineering,
247–248:37–50, 2012.

[32] Z. Dostál, T. Kozubek, P. Horyl, T. Brzobohatý, and A. Markopoulos. Scalable
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