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Abstract

The main objective of this thesis is to present improvements in quadratic programming
algorithms. These improvements speed up the solution of quadratic programming problems,
with or without constraints, which are key in various fields, including, but not limited to,
economics, engineering, and machine learning.

The main improvements are for solving box-constrained quadratic programming pro-
blems. The MPRGP (Modified Proportioning with Reduced Gradient Projections) algorithm
is analyzed and, based on this analysis, improved. The analysis reveals that the expansion
of the active set through the reduced gradient projections is the most expensive part of the
algorithm. Our modification of the expansion step, using the projected conjugate gradient,
proves significantly superior to the original algorithm in most cases. The presented fallback
steps and criteria can be used to guarantee convergence or even ensure that the convergence
rate is at least as good as that of the standard MPRGP algorithm. Another presented
modification is to use the Spectral Projected Gradient (SPG) method as the expansion
step. This proves to be extremely effective in certain cases, but a little less so in others.
Numerical experiments showcasing the effectiveness of the proposed methods, as well as a
comparison with the SPG method, are presented on a number of benchmarks.

Another improvement of MPRGP is in preconditioning, which is not straightforward to
implement when the problem is constrained. Our improvement is to cheaply approximate
the preconditioning in face, which must be recomputed every time the active set changes,
with a preconditioner that is set up only once. The numerical experiments show speedups
between 5.1 and 13.4 compared to the unpreconditioned algorithm. The previous expansion
step modification is a key ingredient for an effective preconditioned algorithm. An error
analysis comparing the standard and the approximate variant of the preconditioning in
face is provided to complement the numerical experiments.

Further improvements include the scalability of FETI (Finite Element Tearing and
Interconnecting) domain decomposition methods, which allow us to solve problems with
more than one billion unknowns using tens of thousands of computational cores on large
supercomputers.

Most of the presented algorithms are implemented in the PERMON library, of which
the author of this thesis was the maintainer and the main contributor throughout their
doctoral studies. The main aim of PERMON is to provide a scalable framework for the
solution of large-scale quadratic problems. Another software contribution was the multilevel
deflation preconditioner, PCDEFLATION, in the PETSc library for scientific computing.

Keywords: quadratic programming, optimization, gradient projections, conjugate gradi-
ents, preconditioning, deflation, coarse problem, penalty method, MPRGP, SPG, SMALE,
FETI, BETI, hybrid FETI, PERMON, PCDEFLATION



Abstrakt

Hlavním cílem této práce je představit vylepšení algoritmů kvadratického programování.
Tato vylepšení urychlují řešení problémů kvadratického programování, s omezeními i bez
nich, které jsou klíčové v různých oblastech včetně ekonomie, inženýrství a strojového
učení.

Hlavní vylepšení jsou zaměřena na řešení problémů kvadratického programování s ome-
zením ve tvaru boxu. Algoritmus MPRGP (Modified Proportioning with Reduced Gradient
Projections) je analyzován a na základě této analýzy vylepšen. Analýza ukazuje, že rozšíření
aktivní množiny pomocí projekcí redukovaného gradientu je nejdražší částí algoritmu. Naše
modifikace kroku rozšíření aktivní množiny pomocí projektovaného konjugovaného gradi-
entu se ukazuje jako výrazně lepší než původní algoritmus ve většině případů. Představené
fallback kroky a kritéria mohou být použity k zajištění konvergence po konečném počtu
iterací nebo dokonce rychlosti konvergence alespoň stejně dobré jako standardní algoritmus
MPRGP. Další představenou modifikací je použití metody Spektrálních Projektovaných
Gradientů (SPG) jako kroku rozšíření aktivní množiny. To se ukazuje jako velmi efektivní
v určitých případech, ale o něco méně v jiných. Numerické experimenty ukazující účinnost
navrhovaných metod a srovnání s metodou SPG jsou prezentovány na řadě benchmarků.

Další vylepšení MPRGP spočívá v předpodmínění, které není snadné implementovat,
když má problém omezení. Naše vylepšení spočívá v levné aproximaci předpodmínění v
takzvané face, které musí být přepočítáno pokaždé, když se změní aktivní množina, pomocí
předpodmínění, které je sestaveno pouze jednou. Numerické experimenty ukazují zrychlení
mezi 5.1 a 13.4 ve srovnání s algoritmem bez předpodmínění. Předchozí modifikace kroku
rozšíření aktivní množiny je klíčovou ingrediencí pro efektivní algoritmus s předpodmíně-
ním. Numerické experimenty jsou doplněny o analýzu chyby porovnávající standardní a
aproximovanou variantu předpodmínění ve face.

Další vylepšení se týkají škálovatelnosti metod doménové dekompozice typu FETI
(Finite Element Tearing and Interconnecting), což nám umožňuje řešit problémy s více než
jednou miliardou neznámých pomocí desítek tisíc výpočetních jader na velkých superpočí-
tačích.

Většina představených algoritmů je implementována v knihovně PERMON, jejímž
správcem a hlavním přispěvatelem byl autor této práce během doktorského studia. Hlav-
ním cílem knihovny PERMON je poskytnout škálovatelné řešení velkých kvadratických
problémů. Dalším softwarovým příspěvkem byl víceúrovňový deflační předpodmiňovač
PCDEFLATION do knihovny PETSc určené pro vědecké výpočty.

Klíčová slova: kvadratické programování, optimalizace, projekce gradientu, předpod-
mínění, deflace, hrubý problém, metoda penalty, MPRGP, SPG, SMALE, FETI, BETI,
hybrid FETI, PERMON, PCDEFLATION
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Chapter 1

Introduction

Quadratic Programming (QP) represents a subclass of optimization problems dealing with
the solution of

arg min
x

1
2xT Ax − xT b s.t. x ∈ Ω,

where, in general, A ∈ Rn×n is a symmetric matrix1 called the Hessian matrix, vector
b ∈ Rn is known as the right-hand side, and Ω is a set of constraints on the solution vector
x ∈ Rn. The minimized quadratic function f(x) = 1

2xT Ax − xT b is known as the cost
function.

This work focuses on developing algorithms and techniques to solve these problems
when A is positive semidefinite, and Ω is a closed convex set that contains specific types of
constraints, such as linear equality and box constraints. We note that the special case of
QP with no constraints, i.e., Ω = Rn, corresponds to a system of linear equations.

QP problems have become nearly ubiquitous with the advancement of scientific com-
puting. They can be found in fields including economics, engineering, machine learning,
and many others. A vast variety of applications in science and industry require the solu-
tion of QP subproblems, and the efficiency of these underlying QP problems often drives
the efficiency of the entire application. Furthermore, as computers become increasingly
powerful, there is a growing interest in and the means to solve more complex problems.

The increased problem complexity arises from various sources, such as the increased
complexity of underlying models or the pursuit of higher accuracy in simulations by
increasing their resolution. An illustration of the first example is adding fractures to a
hydro-mechanical model of a porous medium (e.g., modeling deep geological repositories
of radioactive waste [4]). The fractures add non-penetration conditions (linear inequality
constraints) to a finite element linear elasticity model (system of linear equations).

In the case of the second example, enhancing the spatial and/or temporal resolution
of simulations requires efficient utilization of the available computational resources. To

1Such a general QP is NP-hard to solve exactly [1], and there are no local criteria to determine if the
local minimizer is also a global one [2, 3].

13



14 Introduction Chapter 1

facilitate this, most of the algorithms presented in this work have been implemented in the
PERMON library [5].

PERMON (Parallel, Efficient, Robust, Modular, Object, Numerical)2 is a C library
based on PETSc [6]. PERMON provides data structures, transformations, algorithms,
and supporting functions for QP problem solutions. PERMON also contains FETI-type
domain decomposition [7, 8], which can significantly accelerate the solving of certain types
of QP problems. Parallelism, and more specifically scalability, are among the primary
development goals of PERMON. Our main objective is to solve large QP problems on
modern supercomputers. As such, PERMON was benchmarked on problems containing
more than one billion unknowns (see Section 7.2.1) and was run on up to 27,000 cores
(see Section 4.3.9). However, PERMON can also run efficiently on standard personal
computers.

The author’s own results are summarized in the introduction of each chapter and in
the conclusion 8.1. A list of publications by the author is available in Appendix A.

The thesis is divided into eight chapters and has the following outline:

• Chapter 2 reviews the optimization theory used in this thesis. In particular, Sec-
tion 2.4.1 on optimality conditions and Section 2.5 on duality are important.

• Chapter 3 introduces the software and supercomputers used for computing numerical
experiments on a number of benchmarks, which are also described in this chapter.
The benchmarks are introduced in an early chapter because they are used throughout
the following sections, sometimes to motivate the development of the algorithms’
improvements.

• Chapter 4 discusses solution methods for unconstrained QP problems. These methods
serve as building blocks for the algorithms for constrained QP problems in the
subsequent chapters. Specifically, we introduce the steepest descent method and
improvements consisting of either the Barzilai-Borwein step length or the conjugate
gradient and deflated conjugate gradient methods. Finally, a general deflation
preconditioner, which is implemented in PETSc, is discussed.

• In Chapter 5, we describe the MPRGP algorithm for the solution of QP problems
with box constraints or constraints with similarly cheap projections onto the feasible
set. The main part of the chapter is devoted to the improvements of the MPRGP
algorithm using modifications of the active set expansion step and approximate
preconditioning in face. Both improvements exhibit very large speedups.

• Chapter 6 discusses methods for the solution of equality-constrained problems. In
particular, the range space method and an augmented Lagrangian method (SMALE)
are used in the following chapter.

2The author of this thesis has been a PERMON maintainer since 2018, with contributions starting in
2015.
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• In Chapter 7, the linear inequality QP problems are solved by transforming them
into bound and possibly equality-constrained problems using duality. FETI-type
domain decomposition methods are introduced as a way to accelerate the solution of
the dual QP problems. A number of scalability improvements for the FETI method
are discussed and supported by numerical experiments.

• Finally, Chapter 8 provides the conclusion, where the results of the thesis are
summarized, the author’s contributions are reiterated, and future plans are discussed.





Chapter 2

Optimization Overview

This chapter reviews basic facts and concepts related to optimization, with a particular focus
on QP. After introducing our optimization problem, we review the convexity of functions
and sets. The convexity of the feasible set ensures the existence of the projection onto the
feasible set. This projection is used in many algorithms described in the subsequent sections.
After describing the projection operators, we review some basic optimality conditions and
introduce the first-order necessary (and sufficient) optimality tests. Then we briefly describe
duality and the dual problem. Finally, we make a note on the descent direction, which is a
key concept in iterative optimization algorithms.

The primary references for this section are [9–13].

2.1 Optimization Problem

A general optimization problem is

arg min
x

f(x) s.t.

⎧⎪⎪⎨⎪⎪⎩
gi(x) ≤ 0 for i = 1, . . . , m,

hj(x) = 0 for j = 1, . . . , r,

x ∈ X ⊂ Rn,

where f is the cost function, gi and hj are inequality and equality constraints, respectively,
and X represents other constraints, e.g., X = {x | xi ∈ Z} for some i. The set X is
typically assumed to be closed, and the functions f , gi, and hj are typically assumed to
be smooth (at least of class C1) [13]. The actual feasible set (that is, the set of feasible
solutions), which we denote Ω, is given as the intersection of the individual constraint sets.

This work deals with convex (see the next section) quadratic programming problems

arg min
x

1
2xT Ax − xT b s.t. x ∈ Ω, (2.1)

where A ∈ Rn×n is a symmetric positive semidefinite (SPS) matrix called the Hessian
matrix, vector b ∈ Rn is known as the right-hand side, and Ω is a closed and convex
set of constraints on the solution vector x ∈ Rn. The minimized quadratic function
f(x) = 1

2xT Ax − xT b is the cost function.

17
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A visualization of a quadratic cost function f(x) with a symmetric positive definite
(SPD) Hessian of dimension n = 2 can be found in Figure 2.1.

f(x)

x2 x1

x1

x2

Figure 2.1: Surface and contour plot of a quadratic cost function f(x) with an SPD Hessian
of dimension n = 2. The feasible set can be visualized in the right plot. For example,
x2 ≥ 0 limits the feasible solutions to the x1 axis and above.

2.2 Convexity

A set Ω is convex if the line segment connecting any two points in Ω lies in Ω, which is
formally summarized below.

Definition 2.2.1 (Convex Set). A subset Ω ⊂ Rn is called convex if

αx + (1 − α) y ∈ Ω, ∀x, y ∈ Ω, ∀α ∈ [0, 1] .

Examples of convex sets include the empty set, sets containing a single point, real
intervals, and the set of real numbers R. On the other hand, some sets used as constraints
in optimization are not convex, e.g., the set of integers Z or the set {0, 1} used in binary
optimization. Importantly, the intersection of closed convex sets is closed and convex [9].

Similarly to the convex set, a function f is convex when it lies below the line segment
connecting any two points on its graph.

Definition 2.2.2 (Convex Function). Let a subset Ω ⊂ Rn be convex. A function f : Ω ↦→ R
is convex if

f (αx + (1 − α) y) ≤ αf (x) + (1 − α) f (y) ∀x, y ∈ Ω, ∀α ∈ (0, 1) .

The function f is called strictly convex if the above inequality is strict.

The restriction to QP problems with an SPS Hessian gives us the convexity of the cost
function, while an SPD Hessian gives us the strict convexity [10].
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Convexity is a very strong property of functions and sets. For instance, if a convex
function f is minimized over a convex set, then every local optimal solution is global [9].
Moreover, convexity can give us the existence and possibly even the uniqueness of the
optimum. Therefore, it is a central property in optimization in general and is widely used
in the following sections.

2.3 Projection onto Convex Sets

Our requirement for the feasible set Ω to be closed and convex ensures the existence and
uniqueness of the projection onto Ω. The general definition of the projection is given by
the following theorem.

Theorem 2.3.1 (Projection Theorem). Let a subset Ω ⊂ Rn be nonempty, closed, and
convex. The projection PΩ : Rn ↦→ Ω is defined as

PΩ (x) = arg min
y∈Ω

||y − x||.

Then the projection PΩ (x) is the unique minimizer of the Euclidean distance between
x ∈ Rn and all y ∈ Ω.

Proof. See Proposition 1.1.4 in [9].

An equivalent formulation is to minimize the squared norm of the above distance,
leading to a constrained least squares problem

PΩ (x) = arg min
y∈Ω

1
2 ||y − x||2,

which is a QP problem.
A common application of the projection is to ensure that iterates in an algorithm are

kept in the feasible set, which is utilized by the algorithms of Chapter 5.

2.3.1 Projection Examples

Projections onto some sets have closed forms. These closed forms are typically easier to
evaluate than using an algorithm to solve the projection QP problem given in Theorem 2.3.1.
Selected projection operators are provided below.

2.3.1.1 Bound Constraints

For the lower bound constraints defined as

Ω = {x ∈ Rn | l ≤ x} ,

the projection is given component-wise as

[PΩ (x)]i = max {li, xi} , i ∈ {1, . . . , n} .

The projection for the upper bound is given analogously.
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2.3.1.2 Box Constraints

Combining the lower and upper bound constraints gives the box constraints defined as

Ω = {x ∈ Rn | l ≤ x ≤ u} .

The projection onto the box constraints is defined by subsequent projections onto the lower
and upper bounds, respectively. Therefore, the projection is given component-wise as

[PΩ (x)]i = min {ui, max {li, xi}} , i ∈ {1, . . . , n} .

2.3.1.3 Linear Equality Constraints

Homogeneous1 linear equality constraints are defined as

Ω = {x ∈ Rn | Bx = o} , where B ∈ Rm×n.

The projection is then defined as the orthogonal projection onto the null space of B. If B

is full row rank, which means
(︂
BBT

)︂−1
exists, then the projection can be defined as

PΩ (x) =
[︃
I − BT

(︂
BBT

)︂−1
B

]︃
x.

In any case, for a general matrix B, the projection is defined as

PΩ (x) =
[︂
I − B+B

]︂
x,

where B+ is the Moore-Penrose inverse of B [14]. We note that if B is not full row rank,
there are redundant linear equality constraints that could be eliminated.

For the nonhomogeneous linear equality constraints2

Ω = {x ∈ Rn | Bx = c} ̸= ∅, where B ∈ Rm×n,

the projection can be modified. Let

x = xIm + xKer, (2.2)

where xIm ∈ Im BT and xKer ∈ Ker B. Then the solution for the image part is given as
the least squares solution for the linear equality, which is

xIm = B+c,

or equivalently, when B is full row rank,

xIm = BT
(︂
BBT

)︂−1
c.

1A homogeneous system of linear equations has the right-hand side equal to the zero vector.
2Technically, the constraint functions are affine. We take the name linear from the fact that B is a linear

map. The distinction between affine and linear is used only in Section 2.4.1 about optimality conditions.
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The solution for the null space is given by the projections in the above paragraph. Substi-
tuting the solutions for the image and null space parts into Equation (2.2) gives us the
projection

PΩ (x) =
[︂
I − B+B

]︂
x + B+c

or equivalently, when B is full row rank,

PΩ (x) =
[︃
I − BT

(︂
BBT

)︂−1
B

]︃
x + BT

(︂
BBT

)︂−1
c,

which we also derive in Example 2.4.2 from the optimality conditions.
The splitting (2.2) of the solution vector into two orthogonal vectors, one vector in the

image of BT and the other in the null space of B, is known as the homogenization of the
linear equality constraints. After homogenization, the original QP problem is reduced to a
QP problem restricted to the null space of B, i.e., we solve for xKer with homogeneous
linear equality constraints

Ω = {xKer ∈ Rn | BxKer = o} ,

where the cost function and potentially other constraints present are shifted by substituting
Equation (2.2) with known xIm into them.

The homogenization of the linear equality constraints is often employed to simplify
more general QP problems, especially when additional constraints are involved. We use it
in the FETI method derivation in Section 7.1.2.

2.4 Optimality Conditions

The following theorem provides important conditions for the existence of the optimum for
fairly general functions.

Theorem 2.4.1 (Weierstrass’ Theorem [9]). Let a subset Ω ⊂ Rn be nonempty and let the
cost function f : Ω ↦→ R be lower semicontinuous3 at all points of Ω. Assume that one of
the three conditions holds:

1. Ω is compact4.

2. Ω is closed and f is coercive5.

3. There exists a scalar γ such that the level set

{x ∈ Ω | f(x) ≤ γ}

is nonempty and compact.
3Function f is lower semicontinuous at vector x if f(x) ≤ lim inf

k→+∞
f(xk) for every sequence {xk} ∈ Ω

that converges to x.
4A set is compact if it is closed and bounded. A subset of Rn is bounded if it is inside a ball of finite

radius.
5Function f(x) is said to be coercive if f(x) → +∞ as ||x|| → +∞.
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Then the set of minima of f over Ω is nonempty and compact.

Proof. See Proposition A.8 in [9].

Applying Weierstrass’ theorem to our QP problem, we observe that the QP cost function
is continuous. However, the feasible set Ω may or may not be compact. While we always
assume that the set is closed, it may not be bounded, e.g., partially constrained problems
or problems with only a lower bound. As for the second condition, our QP cost function is
coercive if and only if the Hessian is positive definite [10].

The Frank-Wolfe theorem provides the existence of a solution for quadratic functions
for a certain set Ω, provided that the cost function is bounded.

Theorem 2.4.2 (Frank-Wolfe Theorem). Let f be a quadratic function that is bounded
below on a convex polyhedron Ω ⊂ Rn. Then f attains its minimum on Ω.

Proof. See statement (i) in the appendix of [15].

A convex polyhedron is an intersection of finitely many closed half-spaces [12], which is
often written in terms of vectors x satisfying a linear inequality Bx ≤ o. The restriction
on the set Ω in the statement can be relaxed [16], e.g., for Ω a vector sum of a convex and
compact set and a closed cone [9]. If the right-hand side is in the range of the Hessian
(b ∈ Im A) and the Hessian is SPS, then the cost function f is bounded from below [10].

It is not enough for the set Ω to be closed and convex and for a QP cost function to be
bounded below on Ω for the solution to exist, as illustrated by the following example.

Example 2.4.1. Let Ω =
{︁
(x, y) ∈ R2 ⃓⃓ xy ≥ 1 ∧ y ≥ 0

}︁
and f(x, y) = x2. Then f has an

infimum of 0 on Ω, which is closed and convex, but the infimum is not attained on Ω.

2.4.1 Necessary and Sufficient Optimality Conditions

In practice, it is important to be able to recognize whether a given vector can be, or even is,
a solution. For simplicity, let us consider a general minimization problem with the feasible
set given only by inequality and equality constraints

arg min
x

f(x) s.t.
{︄

gi(x) ≤ 0 for i = 1, . . . , m,

hj(x) = 0 for j = 1, . . . , r,
(2.3)

where the functions f , gi, and hj are continuously differentiable6. Writing the feasible set
in vector notation

Ω = {x ∈ Rn | g(x) ≤ o ∧ h(x) = o} ,

where g(x) = (g1(x), . . . , gm(x))T , h(x) = (h1(x), . . . , hr(x))T , and the inequality is
understood component-wise, we introduce the Lagrangian function

L(x, λI , λE) = f(x) + λT
I g(x) + λT

Eh(x).
6The condition that the cost and constraint functions are of class C1 can be relaxed, and constraints

that are not expressed as equality or inequality can be included as well; see, e.g., [13].
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The components of vectors λI and λE , which we will sometimes write more compactly
as λ =

(︂
λT

I , λT
E

)︂T
, are called Lagrange multipliers. The first-order necessary optimality

conditions are

∇xL(x, λI , λE) = o

∇λI
L(x, λI , λE) = g(x) ≤ o

∇λE
L(x, λI , λE) = h(x) = o

λT
I g(x) = 0

λI ≥ o.

The first condition is the stationarity condition, which is analogous to ∇xf(x) = o for
unconstrained optimization. The next two conditions are the primal feasibility conditions.
Finally, the last two conditions are the complementary slackness and the dual feasibility.
The complementary slackness forbids two linked inequalities (gi(x) and [λI ]i) to be ”slack”,
i.e., hold with strict inequality. These first-order necessary optimality conditions are known
as Karush-Kuhn-Tucker (KKT) conditions [9].

In the case of convex optimization (functions f and gi are convex, hj are affine), the
KKT conditions are also sufficient [11]. This means that any point (x, λ) that satisfies the
KKT conditions is primal and dual optimal, i.e., x is the solution of problem (2.3), and λ

is the solution to the dual problem introduced in the following section. Recall that the QP
problems in which we are interested are convex.

The existence (and uniqueness) of the Lagrange multipliers (and thus the existence of
the primal solution x in the convex case) can be guaranteed by the constraint qualifications.
We provide three examples of constraint qualifications in Definitions 2.4.4 to 2.4.6. Many
more can be found in [17].

Remark 2.4.3. Assume that x∗ is the local minimum of problem (2.3). Then if one of
the following constraint qualifications is satisfied, there exists λ∗ such that the pair (x∗, λ∗)
satisfies the KKT conditions [9].

Definition 2.4.4 (Linearity Constraint Qualification (LCQ)). Functions gi and hj are
affine.

Definition 2.4.5 (Linear Independence Constraint Qualification (LICQ)). The gradients
of the equality constraints and of the active inequality constraints are linearly independent
at x∗. The active inequality constraints at x∗ are those for which gi(x∗) = 0.

Definition 2.4.6 (Slater’s Constraint Qualification (SCQ)). The equality constraints hj

are affine, the inequality constraints gi are convex, and there exists a feasible vector x

satisfying
gj(x) < 0 for each inequality constraint active at x∗.

The KKT conditions for convex problems, equipped with a constraint qualification,
can be used not only to identify whether we have found a minimizer but also to solve the
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optimization problem. The following example provides the projection onto the set defined
by nonhomogeneous linear equality constraints that we promised in Section 2.3.

Example 2.4.2. To obtain the projection P (x) onto a set defined by linear equality
constraints By = c, where B is full row rank, we need to solve by Theorem 2.3.1

P (x) = arg min
y

1
2 ||y − x||2 s.t. By = c,

where we used the equivalent QP problem. The KKT conditions are both necessary (since
the constraints are affine) and sufficient (since the cost function is convex). Writing the
Lagrangian

1
2 ||y − x||2 + λT (By − c) ,

and then writing the KKT conditions, we have

∇yL(x, λ) = y − x + BT λ = o,

∇λL(x, λ) = By − c = o.

Substituting the first equation into the second, we obtain

Bx − BBT λ − c = o.

Solving this equation for the only unknown λ, we get (since B is full rank, so that(︂
BBT

)︂−1
exists)

λ =
(︂
BBT

)︂−1
(Bx − c) .

Finally, we substitute the known λ into the first KKT condition to obtain the projection

P (x) = y = x − BT
(︂
BBT

)︂−1
(Bx − c) .

2.5 Duality and Dual Problem

In the previous example, we first solved for the vector of Lagrange multipliers λ. In fact,
we found the solution of

arg max
λ

q(λ) s.t. λI ≥ o,

where
q(λ) = inf

x∈Ω
L(x, λ)

is the dual function. The maximization problem above is the dual problem to the problem
(2.3), which we analogously call the primal problem. The solution λ∗ is the dual solution
that, together with the primal solution x∗, forms the primal-dual solution pair.

Defining the optimal primal value with the primal solution x∗

f∗ = f(x∗),
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and similarly for the dual problem

q∗ = sup
λI≥o

q(λ),

the optimal dual value always underestimates the optimal primal value.

Theorem 2.5.1 (Weak Duality Theorem [9]). We have

q∗ ≤ f∗.

Proof. See Proposition 6.1.3 in [9].

The difference between f∗ and q∗

f∗ − q∗

is the optimal duality gap, which, by the weak duality theorem, is always nonnegative. If
the optimal duality gap is zero, we say that strong duality holds. Strong duality holds if
the primal problem is convex and a constraint qualification holds [9]. If strong duality
holds, the duality gap

f(x) − q(λ)

for feasible x and λ can be used as a stopping criterion in algorithms.
A characterization of a primal and dual solution is provided by the following theorem.

Theorem 2.5.2 (Saddle Point Theorem). A primal-dual pair (x∗, λ∗) is the solution to
the primal and the dual problem if and only if x∗ ∈ Ω, λ∗

I ≥ 0, and (x∗, λ∗) is the saddle
point of the Lagrangian, in the sense that

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), ∀x ∈ Ω, λI ≥ o.

Proof. See Proposition 6.1.6 in [9].

We note that the optimal value for the primal problem can be expressed symmetrically
to the optimal dual value as

p∗ = inf
x∈Ω

sup
λI≥o

L (x, λ) .

Together with the saddle point theorem and strong duality, this min-max property of the
primal and dual cost functions gives rise to zero-sum games [11, 13]. Other problems
exhibit natural saddle point structures as well, e.g., Stokes flow [18], where the pressure
can be interpreted as a Lagrange multiplier, and optimization algorithms for solving the
saddle point (or enforcing the equality constraints on the divergence of velocity) can be
used.
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2.6 Descent Direction

Many iterative algorithms make steps updating the approximation xk in the form

xk+1 = xk + αd,

where d is a descent direction.
Assuming unconstrained QP minimization

arg min
x

1
2xT Ax − xT b,

a vector d is also a decrease direction if a step in the direction d reduces the cost function
value

f(x + αd) < f(x)

for all sufficiently small α > 0. Using Taylor expansion

f(x + αd) = f(x) + α(Ax − b)T d + α2

2 dT Ad,

we have that d is a decrease direction if and only if

(Ax − b)T d < 0.

Some strategies for choosing the step length α will be discussed in Chapter 4 and Sec-
tion 5.2.3. In the case of constrained problems, we need to ensure that the approximation
xk+1, after taking the step, is feasible.



Chapter 3

Implementation of Quadratic
Programming Algorithms and
Quadratic Programming
Benchmarks

The behavior and performance of the presented algorithms for QP are illustrated and
supported by a number of benchmarks. The benchmarks are interspersed throughout the
following chapters, and the analysis of the presented QP algorithms on these benchmarks is
often used to motivate further developments and improvements of the algorithms. As the
performance of the algorithms, particularly their timing, is affected by the implementation
and hardware, these aspects are also described.

First, the software, then the hardware, and finally the benchmarks are described. Each
benchmark description contains a short overview of the problem, which is followed by a
more detailed description. The benchmark sections of this chapter may be skipped and
only referred to when the benchmarks are encountered in the following chapters, either by
reading the short overview or the complete description.

Most of the algorithms presented in the following chapters are implemented in the
PERMON library. The new implementations and improvements to the library by the
thesis’s author are considered part of this thesis. The ability of the PERMON library to
solve QP problems in a scalable manner has proven to be useful for several applications
and libraries.

3.1 Software Implementing QP Algorithms

Most of the presented algorithms are implemented in the PERMON library. The PERMON
library utilizes the PETSc library. Both libraries are described in the remainder of this
section.

27
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The software and parameters used to compile the presented software greatly affect the
performance of the implementations. These are presented for individual machines in the
following Hardware section 3.2.

3.1.1 PETSc-TAO

PETSc (Portable, Extensible Toolkit for Scientific Computation) [6, 19, 20] is a library
for the scalable (parallel) solution of scientific applications modeled by partial differential
equations. It provides vectors, matrices, discretization management and data communi-
cation, linear solvers, nonlinear solvers, time integrators, and more. In addition, TAO
(Toolkit for Advanced Optimization), an optimization library, is a part of PETSc.

The parallelization of the library is primarily achieved through the row-wise distribution
of vectors and matrices among the available computational cores, which is realized by MPI.
The use of GPUs is also supported.

PETSc is written in C and provides Fortran and Python bindings, as well as an
interface to many additional numerical libraries. From these, we mostly use external direct
solver libraries MUMPS [21, 22] and SuperLU_DIST [23], which provide fast parallel
implementations of the Cholesky and/or LU decompositions.

3.1.2 PERMON

PERMON [5] stands for Parallel, Efficient, Robust, Modular, Object-Oriented, and Numer-
ical. The main PERMON module is the PermonQP library, which consists of the object
for QP problem definition, QP transformations, QP solvers, and supporting functions.
PermonQP provides a number of QP transformations that are used to modify a given QP
problem so that the formulation can be solved by the provided solvers and/or improved so
that the solution is more efficient. Each QP transformation creates a new QP problem
with a function that can reconstruct the solution of the QP problem before transformation.
These QP problems are placed into a chain (doubly linked list) illustrated in Figure 3.1.
The FETI method described in Section 7.1 is essentially implemented in PermonQP as a
chain of QP transformations: dualization, homogenization of the equality constraints, and
projection enforcing the equality constraints. More information about the QP transforma-
tions and the QP transformation chain can be found in [24]. The closed development of
the library started in 2011, and it was made publicly available in 2016.

The second PERMON module is called PermonSVM. It provides a library and a
computer program to train linear support vector machine classifiers, which are described in
Section 3.3.6. An overview of the features of PermonSVM can be found in the README
in the project’s repository [25], with more details available in [26]. PermonSVM depends
on PermonQP for the solution of QP problems. The public development of PermonSVM
started in 2017.

The PERMON libraries are written in C and utilize the PETSc library as the linear
algebra backend. Moreover, the TAO optimization solvers and linear systems KSP solvers,
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Figure 3.1: An illustration of the QP problems chain. The user provides the QP0 formula-
tion, which is then transformed into the QP1 and finally the QP2 formulation. Each QP
transformation injects a reconstruction function so that it is possible to reconstruct the
solution of the original problem once QP2 is solved [24].

including their preconditioners, can be utilized directly to solve QP problems. The
PERMON libraries have the same object design as PETSc, making them easy to use for
users familiar with PETSc. A number of additional PETSc features are utilized to decrease
the complexity of PERMON. These include, e.g., profiling, I/O routines, the build system,
the test system, and documentation generation.

As in PETSc, most of the parallelization in PERMON comes from the row-wise
distribution of matrices and vectors, which is realized by MPI. The scalability of PERMON
was tested on up to 27, 000 computational cores (Section 4.3.9) and on problems with more
than a billion unknowns (Section 7.2.1).

Both modules are published under the permissive BSD-2-Clause open-source license
and are available on GitHub [25].

PERMON has been interfaced by several software packages and research codes:

• The DEMSI project, solved in Los Alamos, uses PermonQP algorithms for load
balancing particles in ice sheet melting simulations [27].

• The Flow123d library [28], developed at the Technical University of Liberec, utilizes
FETI and QP solution infrastructure provided by PERMON to solve mechanical
contact subproblems in hydro-mechanical problems.

• The HyTeG library [29], developed at the University of Erlangen-Nuremberg, pro-
viding high-performance finite element methods, can utilize PERMON to solve
constrained FEM problems.

• The SIFEL library [30], developed at the Czech Technical University, can utilize the
FETI method and the QP solution infrastructure provided by PERMON to solve
large-scale mechanical contact problems in structural engineering.
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• Wildfire detection software [26], developed by Argonne National Laboratory, the
Institute of Geonics of the Czech Academy of Sciences, Oak Ridge National Laboratory,
and the VSB - Technical University of Ostrava, uses support vector machines provided
by PermonSVM to detect wildfires from satellite images.

The author of this thesis directly helped implement the interface or, at the very least,
provided support for the codes listed above. In fact, the author has been the main
contributor to PermonQP and the maintainer of PERMON since 2018. An overview of
the contributed commits to PermonQP is in Figure 3.2, and the contributions can be
viewed in the project’s Git repository [25]. As the maintainer, the author made biannual
major releases that coincided with the releases of PETSc. Altogether, there were 15 major
releases from version 3.7 and a small number of minor releases. The current version, at the
time of writing, is 3.21, which was released in April 2024.

Figure 3.2: The number of commits (excluding merge commits) and line additions and
deletions (nearly 60% of the repository’s overall commits and lines changed) made by the
author to PermonQP since the public development of PermonQP started in May 2016 until
June 2024 [25].

3.2 Hardware Used to Compute Benchmarks

Large-scale benchmarks, as well as benchmarks where timings are provided, were run on
one or more of the following supercomputers.

3.2.1 ARCHER

ARCHER [31] was a Cray XC30 supercomputer operated by EPCC (formerly the Edinburgh
Parallel Computing Centre). It had a peak performance of 2.5 petaFLOPS, ranking at
number 20 on the TOP500 list [32] when introduced. It was decommissioned in 2021.
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The supercomputer contained 4, 920 nodes. Each node featured two 2.7 GHz, 12-core
Intel Xeon E5-2697v2 (Ivy Bridge) processors and at least 64 GB of memory. The Cray
Aries interconnect linked all compute nodes in a Dragonfly topology.

As for the software used in our benchmarks, the BLAS, LAPACK, and ScaLAPACK
libraries were provided by Cray LibSci. The MPI implementation was Cray MPICH. All
other libraries, including PERMON, PETSc, MUMPS, SuperLU, etc., were compiled using
optimized builds (-O3) by the Cray Compiling Environment (CCE).

3.2.2 LUMI

LUMI [33] is an HPE Cray EX supercomputer hosted by the LUMI consortium. It has a
peak performance of 531 petaFLOPS, ranking at number 3 on the TOP500 list [32] when
introduced.

Our experiments were run on the LUMI-C (CPU-only) partition, which consists of 2, 048
nodes. Each node contains two 2.45 GHz, 64-core AMD EPYC 7763 (Zen 3) processors
and at least 256 GB of memory. The HPE Cray Slingshot-11 200 Gbps interconnect links
all nodes in a Dragonfly topology.

As for the software used in our benchmarks, the BLAS, LAPACK, and ScaLAPACK
libraries were provided by Cray LibSci. The MPI implementation was Cray MPICH. All
other libraries were compiled using optimized builds (-O3) by the HPE Cray Compiling
Environment (CCE).

3.2.3 MareNostrum 3

MareNostrum 3 [34] was an IBM supercomputer operated by the Barcelona Supercomputing
Center. It had a peak performance of 1 petaFLOPS, ranking at number 30 on the TOP500
list [32] when updated to the final configuration. It was decommissioned in 2017.

The supercomputer contained 3, 056 nodes. Each node featured two 2.6 GHz, 8-core
Intel Xeon E5-2670 (Sandy Bridge) processors and at least 32 GB of memory. Compute
nodes were interconnected by InfiniBand FDR10.

As for the software used in our benchmarks, the BLAS, LAPACK, and ScaLAPACK
libraries were provided by Intel MKL. The MPI implementation was IBM POE. All other
libraries were compiled with optimized builds (-O3) using Intel compilers.

3.2.4 Salomon

Salomon [31] was an SGI ICE X supercomputer operated by the IT4Innovations National
Supercomputing Center, VSB-Technical University of Ostrava. It had a peak performance
of 2 petaFLOPS, ranking at number 40 on the TOP500 list [32] when introduced. It was
decommissioned in 2021.

The supercomputer contained 1, 008 nodes. Each node featured two 2.5 GHz, 12-core
Intel Xeon E5-2680v3 (Haswell) processors and 128 GB of memory. The nodes were
interconnected by InfiniBand FDR56 with a 7D Enhanced hypercube topology.
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As for the software used in our benchmarks, the BLAS, LAPACK, and ScaLAPACK
libraries were provided by Intel MKL. The MPI implementation was Intel MPI. All other
libraries were compiled with optimized builds (-O3) using Intel compilers.

3.3 QP Benchmarks

The algorithms described in the following chapters were tested on the benchmarks presented
in this section. The description of each benchmark provides a brief overview in the first
paragraph, followed by a more detailed description, which should allow for the reconstruction
of the benchmark. The appropriate function spaces and the weak formulations are omitted,
but they can be found in the provided references. The default initial guess for the
benchmarks is a null vector, unless stated otherwise.

3.3.1 Random Box-Constrained Problems

Three random box-constrained QP problems, named BQP1, BQP2, and BQP3, were
generated using code available at [35], based on the methodology described in [36].

All generated problems have non-degenerate solutions. The size of the Hessian is
n = 15, 000 with a condition number κ(A) = 104, and the amount of near-degeneracy
is ndeg = 1. The number of active variables at the solution is 10%, 50%, and 90% for
problems BQP1, BQP2, and BQP3, respectively. The generated problems are available
under the BQP-15000 directory in [37].

3.3.2 1D Poisson’s Contact Problems

The problem is a model of string displacement with a lower bound. The first variant, ex1,
has the bound constraints over the entire domain, while ex2 has the same constraints but
only over the first half of the domain. See Figure 3.3 for the visualization of the solutions
to the problems. These problems correspond to PERMON examples with the same names.

Formally, we discretize the 1D Poisson’s equation

−u′′(x) = −15, x ∈ [0, 1]

u(0) = u(1) = 0

by the central finite differences and impose the following constraint on the solution

u(x) ≥
sin
(︁
4πx − π

6
)︁

2 − 2, x ∈ Ω,

where Ω = [0, 1] for ex1 and Ω =
[︂
0, 1

2

]︂
for ex2.

3.3.3 2D Journal Bearing Problem

The jbearing2 benchmark is a variant of the journal bearing problem from the MINPACK-2
test problem collection [38]. The benchmark computes a pressure distribution in a thin film
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Figure 3.3: Solution for the ex1 problem (left) and the ex2 problem (right). The dashed
line represents the values of the bound constraints.

of lubricant between a freely rotating cylindrical shaft (journal) inside a cylindrical sleeve
and the aforementioned sleeve. An illustration of the solution can be found in Figure 3.4.
The problem implementation can be found in PERMON as an example under the jbearing2
name.

Figure 3.4: Solution for the journal bearing problem. The pressure is scaled by a factor of
20, with the legend containing the true values.

The continuous version of the problem has the form

min
v∈K

q(v) ≡
∫︂

D

(︃1
2wq(x)∥∇v(x)∥2 − wl(x)v(x)

)︃
dx,
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where wq(x1, x2) = (1 + ϵ cos x1)3, wl(x1, x2) = ϵ sin x1 for some eccentricity constant
ϵ ∈ (0, 1), and D = (0, 2π) × (0, 2d), for some constant d > 0. Since the unknown variable
is the pressure, which under normal operating conditions cannot be negative [39], we have
a lower bound on the nonnegativity of the solution. Therefore, the convex feasible set is

K = {v ∈ H1
0 (D) : v ≥ 0 on D},

where H1
0 (D) is the Hilbert space of functions with compact support on D such that v and

∥∇v∥2 belong to L2(D).
We use P1 finite elements regular discretization of this problem, which leads to a QP

problem with nonnegativity lower bound constraints. For our tests, we consider the journal
bearing problem with ϵ = 0.1 and d = 10, and different discretizations characterized by the
number of grid points in the x1 and x2 directions.

3.3.4 3D Linear Elasticity Cuboid Contact Problem

The linear elasticity cuboid is fixed at the bottom and pushed from the top. There is a
rigid obstacle close to the right side, and non-penetration conditions are imposed between
the cuboid and the obstacle. See Figure 3.5 for the problem illustration and solution.

Figure 3.5: Problem setting for the 3D linear elasticity cuboid contact problem and the
solution.

The model of linear elasticity [40] over a cuboid domain Ω, deforming under the
application of the body force f and the surface force g, can be described as

− div σ = f in Ω,

u = o on ΓD,

σ · n = g on ΓN ,

where the unknown u is the displacement, ΓD is the bottom side, ΓN is the top side, and
n is the outer normal. Hooke’s law, which reads

σ = Cε(u), (3.1)
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relates the Cauchy stress tensor σ to the strain tensor ε(u), which is defined as

ε(u) = 1
2
(︂
∇u + (∇u)T

)︂
,

by means of the symmetric positive definite elastic tensor C. In our case, since we have an
isotropic material, it holds that

Cε(u) = 2µε(u) + λ tr (ε (u)) I,

where µ and λ are the material-dependent Lamé constants, and tr is the trace of a matrix
defined as the sum of the diagonal elements. The Lamé constants are calculated from the
Young’s modulus E and the Poisson’s ratio ν by the following relations

λ = Eν

(1 + ν)(1 − 2ν) and µ = E

2 (1 + ν) .

In our case, the parameters are f = o, g = −465 N/mm2, E = 2 · 105 MPa, ν = 0.33, the
distance from the obstacle is 10−3 mm, and the cuboid is 1 × 1 × 1 mm unless otherwise
stated. The problem is regularly discretized with Q1 finite elements.

3.3.5 3D Tunnel Excavation in Fractured Porous Medium

The hydro-mechanical model simulates the excavation of a cylindrical tunnel extending a
large-profile drift and, more importantly, the subsequent changes in rock pressure resulting
from this excavation. It is assumed that the highly permeable fractures affect the pressure
evolution within the domain. The mechanics part is a QP problem with non-penetration
(linear inequality) contact conditions on the fractures. An illustration of the geometry,
including the fractures, is in Figure 3.6. A detailed view of a computational mesh with
fractures is shown in Figure 3.7.

Figure 3.6: Two discrete fracture network (blue) configurations in the tunnel (grey)
excavation test. Left: 200 fractures; right: 400 fractures [4].

The model is based on Biot’s poroelasticity, describing the balance of mass and forces,
as given by the equations

− div σ = f in I × Ω (3.2)

∂t (Sp + (div u)) + div q = g in I × Ω, (3.3)
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Figure 3.7: A detailed view of the computational mesh of the domain with 400 fractures
(2D objects) [4].

where the unknowns u are the displacement and p is the pressure; furthermore, S is the
storativity, f is the density of the body force, g is the density of the fluid source, and
I = [0, T ] is the time interval.

The stress tensor σ is determined by Hooke’s law (3.1), and the flux q is given by
Darcy’s law

q = −K∇p,

where K is the hydraulic conductivity tensor and ∇p is the hydraulic gradient. The problem
is discretized by simplicial finite elements, where the displacement uses P1, the pressure
uses P0, and the velocity uses the lowest-order Raviart-Thomas (RT0) basis functions. The
solution is obtained using the fixed-stress splitting method, which iterates between solving
the discretized mechanics part Equation (3.2), which is a linear elasticity problem, and the
discretized flow part Equation (3.3). See [4] for the boundary conditions and the precise
problem setting, and see [4, 41] for the model derivation. The model is implemented in the
Flow123d library [28].

3.3.6 Support Vector Machine Classification

The benchmark consists of learning the Support Vector Machine (SVM) linear classifier
[42] implemented in PermonSVM [43]. The SVM datasets (Australian, Diabetes, and
Ionosphere) used in the benchmark are available from the LIBSVM datasets webpage [44],
and their sizes are given in Table 3.1.

The goal of the SVM classifier is to find the maximal-margin hyperplane that divides
samples into two classes, with the hyperplane having the maximum distance (margin)
between the two classes. Let us define a training set

{(x1, y1) , (x2, y2) , . . . , (xm, ym)},
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Dataset Training size Number of features
Australian 690 14
Diabetes 768 8
Ionosphere 351 34

Table 3.1: Number of samples in the training datasets (training size) and the number of
features for each dataset used in our benchmarks.

where m is the number of samples, xi ∈ Rn (n ∈ N represents the number of features) is
the ith sample, and yi ∈ {−1, 1} denotes the label (class) of the ith sample. The goal of
the soft-margin SVM is to find a separating hyperplane

wT x − b = 0,

where w is the normal of the hyperplane, and b
||w|| determines the bias from the origin.

Having the separating hyperplane, we can classify any sample x by a simple rule:

If wT x + b ≥ 0, then x belongs to Class A, else x belongs to Class B.

See the illustration in Figure 3.8, left.

Figure 3.8: Illustration of a hyperplane separating the two classes with a maximal margin.
The encircled samples are the support vectors (left) and the misclassified samples due to
the penalty parameter (right).

The distance between the two classes for a given hyperplane is 2
||w|| . Therefore, to

maximize the distance, we solve the following minimization problem

arg min
w, b, ξi

1
2wT w + C

m∑︂
i=1

ξi s.t.

⎧⎨⎩ yi

(︂
wT xi − b

)︂
≥ 1 − ξi,

ξi ≥ 0,

where we penalize misclassified samples by the penalty parameter C and obtain a so-called
soft-margin SVM primal formulation. See illustration Figure 3.8, right.
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The bias b can be incorporated into w by augmenting samples by one dimension in the
following way

ˆ︁w =
(︄

w

b

)︄
, ˆ︂xi =

(︄
xi

1

)︄
.

Then dualizing (Section 2.5) the above minimization problem with the augmented variables,
we obtain the (relaxed bias) dual soft-margin SVM formulation

arg min
α

1
2αT Y T XT XY α − αT e s.t. o ≤ α ≤ Ce,

where e = (1, . . . , 1)T , X = (ˆ︂x1, . . . ,ˆ︃xm), and Y = diag (y1, . . . , ym). This final formula-
tion is a box-constrained QP with an SPS Hessian.

The normal vector is reconstructed by

w =
m∑︂

i=1
αiyixi,

while the bias is reconstructed by

b = 1
|ISV |

∑︂
i∈ISV

(︂
xT

i w − yi

)︂
,

where ISV = {i | αi > 0, i = 1, 2, . . . , m}, and
⃓⃓⃓
ISV

⃓⃓⃓
is the cardinality of ISV .
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Unconstrained Quadratic
Programming

Minimization of an unconstrained QP problem

arg min
x

1
2xT Ax − xT b (4.1)

is equivalent to the solution of a system of linear equations

Ax = b (4.2)

due to the stationarity KKT condition (Section 2.4.1).
The solution of systems of linear equations plays a prominent role in many problems

across various disciplines, e.g., economics and engineering. Therefore, it is not surprising
that Krylov subspace methods, one of the most successful classes of methods for solving
large systems of linear equations, have been named among the ”Top 10 Algorithms of the
20th Century” [45].

In this chapter, we first discuss the steepest descent method, which is the basis for
many algorithms introduced in the latter parts of this thesis. Then we derive the conjugate
gradient method, which is perhaps the most well-known representative of the Krylov
subspace methods. Finally, a deflation preconditioner for accelerating the Krylov subspace
methods is discussed.

The author’s main result in this section is a general multilevel deflation preconditioner
known as PCDEFLATION [46], which is part of PETSc.

4.1 Steepest Descent Methods

The steepest descent method is based on the line search procedure

xk+1 = xk + αkdk. (4.3)

To ensure that the iterates decrease the cost function, i.e., f(xk+1) < f(xk), we need to
choose an appropriate search direction and step length. The direction of the most rapid

39
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decrease, i.e., the direction giving the steepest descent, is the direction of the negative
gradient

dk = −∇xf(xk) = b − Axk,

which, of course, verifies the condition on the decrease direction (Section 2.6). The negative
gradient is commonly known as the residual rk = dk = b − Axk. Rewriting Equation (4.3)
using residuals as the descent directions yields

xk+1 = xk + αkrk.

Scaling the previous equation by −A and adding b to both sides, we obtain the residual
recurrence

rk+1 = rk − αkArk.

The step length αk is obtained by minimizing the cost function

arg min
αk

f(xk + αkdk).

Using the necessary condition for extrema, we have

0 = ∂

∂αk
f(xk + αkdk) = dT

k ∇xf(xk + αkdk) = dT
k (A (xk + αkdk) − b) ,

therefore

αk = dT
k rk

dT
k Adk

, (4.4)

and we have also found that the descent direction dk = rk is orthogonal to the gradient
∇xf(xk+1) = −rk+1. See Figure 4.1, left, for an illustration, and notice that the orthogo-
nality of the descent directions means that we might minimize in the same direction more
than once.

x1

x2

x1

x2

Figure 4.1: Contour plots of f(x) for an SPD matrix of dimension n = 2, with plotted
steps of the steepest descent method (left) and the CG method (right), which is introduced
in the next section.
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The stopping criterion is typically the reduction of the norm of the gradient

||Axk − b|| < ϵ,

the square of which we conveniently compute as the numerator in the step length compu-
tation.

We can summarize the previous observations in Algorithm 4.1.

Algorithm 4.1: Steepest descent method
Input: A, x0, b

1 r0 = b − Ax0
2 for k = 0, · · · :
3 s = Ark

4 αk =
(︂
rT

k rk

)︂
/
(︂
sT rk

)︂
5 xk+1 = xk + αkrk

6 rk+1 = rk − αks
Output: xk

4.1.1 Alternative Step Lengths

While the steepest descent step length is optimal in the sense that it yields the largest
decrease in the cost function value, a shorter (or longer) step length can yield quicker
convergence because it can avoid the zigzag pattern illustrated in the left part of Figure 4.1.
This alternating pattern is essentially present even for an SPD Hessian with dimensions
greater than two. In [47, 48], it was shown that the steepest descent method asymptotically
alternates between two directions corresponding to the eigenvectors associated with the
smallest and largest eigenvalues of the Hessian1. The alternative step lengths presented in
[49] not only avoid the alternating pattern but also try to approximate the second-order
information by the step length.

Writing the Taylor expansion for our QP problem

f(x + d) = f(x) + ∇xf(x)T d + 1
2dT Ad,

the optimal d is obtained from the stationarity condition

o = ∂

∂d
f(x + d) = ∇xf(x) + Ad.

Then for an SPD Hessian A, the optimal direction is

d = −A−1∇xf(x)

and we have found the relation for the Newton method

xk+1 = xk + d = xk − A−1∇xf(x).
1When the initial gradient is not equal to a nonzero multiple of an eigenvector, in which case the

steepest descent method converges in a single iteration
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The Quasi-Newton method replaces the inverse of the Hessian in the above equation with
some approximation. One such approximation can be obtained from the secant equation

A(xk − xk−1) = A(xk − b − xk−1 + b) = ∇xf(xk) − ∇xf(xk−1).

Approximating the Hessian A by (αkI)−1, we can obtain αk by minimizing the above
equation either as

arg min
αBB1

k

||α−1
k sk−1 − yk−1||

or
arg min

αBB2
k

||sk−1 − αkyk−1||,

where sk−1 = xk −xk−1 and yk−1 = ∇xf(xk)−∇xf(xk−1). Carrying out the minimization
gives, respectively, two Barzilai-Borwein step length rules [49]

αBB1
k = ||sk−1||2

sT
k−1yk−1

,

and

αBB2
k =

sT
k−1yk−1

||yk−1||2
. (4.5)

Further modifications of these step lengths are used in the spectral projected gradient
method in Section 5.2.3.1.

4.2 Conjugate Gradient Method

4.2.1 Minimization over Subspace

Another option to escape the alternating directions in the steepest descent method is to
define the step direction using the information obtained from the previous steps, thereby
avoiding repeated minimization in the same direction. In order to achieve this, we will
present a method that, in a single iteration, will find the minimizer over some subspace
and a way to extend this subspace for the next iteration. Formally, we would like to create
a nested sequence of subspaces

S1 ⊂ S2 ⊂ · · · ⊂ Rn,

where dim(Sk) = k. Now, given an initial guess x0 for each k, we will solve

arg min
x∈x0+Sk

f(x).

Because the subspaces are expanding, we will obtain better and better approximations of
the solution x, and after n steps, the exact solution. However, we would like to obtain
a good approximation far sooner than after n steps. Therefore, we need to construct
subspaces Sk so that f(x) decreases quickly.
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Since the subspaces are nested, we know that Sk+1 contains the previous minimizer xk.
Moreover, we already know that the objective function f(x) decreases most rapidly in the
direction of the negative gradient. Therefore, it seems reasonable to extend Sk into Sk+1

by the gradient gk = ∇xf(xk). This choice makes the next approximation xk+1 at least as
good as the one that the steepest descent method would make.

It follows that S1 = span{g0}. Now, as discussed above, we extend the space by g1,
i.e., S2 = span{g0, g1}. It turns out we can rewrite this slightly because

g1 = Ax1 − b = Ax1 − Ax0 + g0 = A(x0 + αg0) − Ax0 + g0 ∈ span{g0, Ag0},

where α ∈ R. We used the fact that x1 is the minimizer on x0 + span{g0} = x0 + αg0.
Similarly, for the next space, we have

g2 = Ax2 − b = Ax2 − Ax1 + g1

= A(x0 + αg0 + βAg0) − A(x0 + γg0) + g1 ∈ span{g0, Ag0, A2g0},

where α, β, γ ∈ R. By repeating this process, we obtain that

Sk+1 = span{g0, g1, g2, . . . , gk} = span{g0, Ag0, A2g0, . . . , Akg0} = Kk+1 (A, g0) . (4.6)

The space Kk+1 (A, g0) = span{g0, Ag0, A2g0, . . . , Akg0} is called the Krylov subspace.
Thus, we found that we can hope for a faster convergence than that of the steepest descent
method by minimizing the functional (4.1) in the Krylov subspaces.

This introduction was taken from the author’s Master’s thesis [50] and is, in turn, based
on [51].

4.2.2 Conjugate Gradient Method

This section derives the CG method using some ideas from [9] to tie in the idea of the
previous section.

The CG method uses the same line search procedure as the steepest descent method

xk+1 = xk + αkpk, (4.7)

with the optimal line search step length given by Equation (4.4).
However, instead of taking residuals as the descent direction, we require that our

directions pk are mutually A-conjugate, which means

pT
i Apj = 0, ∀ i ≤ k ∧ j ≤ k s.t. i ̸= j.

Such vectors are also known as A-orthogonal. Writing a linear combination of a set of
mutually A-conjugate vectors

pk = α0p0 + · · · + αk−1pk−1,
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then multiplying by pT
k A and using A-orthogonality between pk and all pj , j = 0, . . . , k−1,

we have
pT

k Apk = α0pT
k Ap0 + · · · + αk−1pT

k Apk−1 = 0.

Thus, a set of mutually A-conjugate vectors is linearly independent.
We can build the set of A-conjugate directions using the Gram-Schmidt procedure to

A-orthogonalize the current residual against all previous search directions to define the
new search direction

pk+1 = rk+1 +
k∑︂

j=0
βj

k+1pj , (4.8)

provided that the residuals are linearly independent, which we will verify later. Multiplying
the last equation by pT

i A for each i = 0, . . . , k, we get from the mutual A-conjugacy that

pT
i Apk+1 = pT

i Ark+1 +
k∑︂

j=0
βj

k+1pT
i Apj = 0,

and then

βj
k+1 = −

pT
j Ark

pT
j Apj

= −rT
k Apj

pT
j Apj

. (4.9)

Since αk is chosen to minimize the cost function

arg min
αk

f(xk + αkpk),

then for all i
∂f(xi + αpi)

∂α

⃓⃓⃓⃓
α=αi

= ∇xf(xi+1)T pi = 0.

Moreover, for i = 0, . . . , k − 1

∇xf(xk+1)T pi = pT
i (Axk+1 − b) = pT

i A

⎛⎝xi+1 +
k∑︂

j=i+1
αjpj

⎞⎠− pT
i b

= pT
i Axi+1 − pT

i b = ∇xf(xi+1)T pi,

which combined with the previous equality gives

∇xf(xk+1)T pi = 0, ∀i = 0, . . . , k. (4.10)

Using the previous result, we have

∂f(x0 + γ0p0 + · · · + γkpk)
∂γi

⃓⃓⃓⃓
γi=αj

j=0,...,k

= 0, ∀i = 0, . . . , k.

and therefore the cost function is minimized over an ever-expanding subspace

arg min
x∈x0+S∗

k+1

f(x),
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where S∗
k+1 = {p0, . . . , pk}. Finally, we have, by construction from Equation (4.8), that rk

is a linear combination of the directions p0, . . . , pk. Therefore,

r0, . . . , rk and p0, . . . , pk span the same subspace.

Moreover, if rk = b − Axk is not zero (otherwise, we have found the solution), we have
from Equation (4.10) that

rk is orthogonal to p0, . . . , pk−1,

which by previous observation means

rk is orthogonal to r0, . . . , rk−1,

and therefore r0, . . . , rk are linearly independent, which was the missing piece for the
Gram-Schmidt process to be valid. Furthermore, the discussion shows that the subspace
we minimize over S∗

k is precisely the Krylov subspace Kk from the previous section.
To give the CG method in its common format, we find alternative formulas for the step

lengths α and β. First, multiplying Equation (4.8) by Apk+1 and using the A-conjugacy
of the search directions, we obtain an identity

pT
k+1Apk+1 = pT

k+1Ark+1. (4.11)

The difference of subsequent residuals is, by the residual definition and Equation (4.7),

rj+1 − rj = −A (xj+1 − xj) = −αjApj .

Multiplying by rk+1, we have from the orthogonality of the residuals that

−αjrT
k+1Apj = rT

k+1 (rj+1 − rj) =

⎧⎨⎩0, if j = 0, . . . , k − 1

rT
k+1rk+1, if j = k.

(4.12)

Since the numerator in βj
k+1 is nonzero only for j = k, we simplify the notation βj

k+1 = βk+1.
As in Section 4.1, we can obtain the residual recurrence

rk+1 = rk − αkApk.

Multiplying the residual recurrence by rk, we get from the orthogonality of residuals and
the identity (4.11) that

rT
k rk = αkrT

k Apk = αkpT
k Apk. (4.13)

Substituting this equation, together with Equation (4.12), into Equation (4.9) allows us to
compute βk+1 as

βk+1 =
rT

k+1rk+1

rT
k rk

.

Furthermore, Equation (4.13) gives us an alternative formulation for the line search step
length

αk = rT
k rk

rT
k Apk

= rT
k rk

pT
k Apk

.

Putting the derived formulas together yields the CG method illustrated in Algorithm 4.2.
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Algorithm 4.2: CG method
Input: A, x0, b

1 r0 = b − Ax0
2 p0 = r0
3 for k = 0, · · · :
4 s = Apk

5 αk =
(︂
rT

k rk

)︂
/
(︂
sT pk

)︂
6 xk+1 = xk + αkpk

7 rk+1 = rk − αks

8 βk+1 =
(︂
rT

k+1rk+1
)︂

/
(︂
rT

k rk

)︂
9 pk+1 = rk+1 + βk+1pk

Output: xk

4.2.3 CG Method Convergence

The CG algorithm is constructed so that in every iteration it minimizes f(x) over the
Krylov subspace x0 +Kk (A, r0). With the error of approximation defined as ϵk = xk −x∗,
we have

f(xk) = 1
2xT

k Axk − xT
k b = 1

2 (xk + x∗ − x∗)T A (xk + x∗ − x∗) − xT
k b

= 1
2ϵT

k Aϵk + 1
2ϵT

k Ax∗ + 1
2(x∗)T Axk − xT

k b = 1
2ϵT

k Aϵk − 1
2(x∗)T Ax∗,

and since f(x∗) = −(x∗)T Ax∗/2, the equation can be rewritten as

f(xk) = 1
2 ||ϵk||2A + f(x∗).

Therefore, each iteration of the CG method minimizes the error in A-norm over the
subspace x0 + Kk (A, r0). Since

ϵk = xk − x∗ ∈ −x∗ + x0 + span{r0, . . . , Ak−1r0} = ϵ0 + span{Aϵ0, . . . , Akϵ0},

the error term can be written as a linear combination

ϵk =
(︄

I +
k∑︂

i=1
φiA

i

)︄
ϵ0,

where φi ∈ R are coefficients chosen by CG so that ||ϵk||A is minimized. Moreover, using
a polynomial Pk(A) of degree k that satisfies Pk(O) = I, we can rewrite the previous
equation as

ϵk = Pk(A)ϵ0. (4.14)

Then the CG method in the kth iteration finds a polynomial Pk(A) that minimizes the
error term given by (4.14) in the A-norm, i.e.,

||ϵk||A = min
Pk

||Pk(A)ϵ0||A.



Section 4.2 Conjugate Gradient Method 47

Given the λmin = λ1, . . . , λn = λmax eigenvalues of the Hessian A and their corresponding
normalized eigenvectors v1, . . . , vn, the initial error term ϵ0 can be expressed as a linear
combination

ϵ0 =
n∑︂

i=1
ξivi,

which allows us to write (4.14) as

ϵk = Pk(A)
n∑︂

i=1
ξivi =

n∑︂
i=1

ξiPk(λi)vi.

Using the orthonormality of the eigenvectors vi, we can write the square of the A-norm
of the error as

||ϵk||2A = min
Pk

n∑︂
i=1

ξ2
i (Pk(λi))2 λi ≤ min

Pk

max
λ∈σ(A)

(Pk(λ))2
n∑︂

i=1
ξ2

i λi

= min
Pk

max
λ∈σ(A)

(Pk(λ))2 ||ϵ0||2A. (4.15)

This result provides some insight into what constitutes a favorable spectrum of the
Hessian A. Assuming our initial guess x0 was not a solution, the error is zero if Pk is
zero for each distinct eigenvalue. Tight clusters of eigenvalues or eigenvalues with high
multiplicity are (essentially) reduced by the same Pk, which, in practice, saves a number
of iterations. The eigenvalues close to zero are problematic because of the restriction
Pk(0) = 1. On the other hand, if the Hessian A is only positive semidefinite and the linear
system is consistent (the right-hand side b is in the range of A), we can still use CG for
the solution of such a system [52]. Moreover, the zero eigenvalues, and therefore the null
space of the Hessian, are ignored.

It follows from (4.15) that the relative error in the A-norm can be bounded by

||ϵk||A
||ϵ0||A

≤ min
Pk

max
λ

|Pk(λ)| ≤ 2
(︄√

κ − 1√
κ + 1

)︄k

,

where κ = λmax/λmin is called the condition number of A. The last inequality is derived
by bounding the value of maxλ |Pk(λ)| by the kth scaled and shifted Chebyshev polynomial
on the [λmin, λmax] interval; see, e.g., [53] for a proof. Bear in mind that the previous result
is only an upper bound, i.e., having two Hessians with one being much better conditioned
than the other, there is no guarantee that the CG will converge faster for the Hessian
that is better conditioned. For example, the CG method applied to a badly conditioned
problem with only two distinct eigenvalues will converge in at most two iterations, while if
the better-conditioned Hessian has many distinct eigenvalues, the CG method may require
many iterations.

4.2.4 Preconditioned CG Method

As was shown in the previous section, the speed of convergence depends on the spectral
properties of the Hessian A. Therefore, suitably improving the spectrum of the Hessian
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will improve the convergence of the CG method. The improvement is achieved by precondi-
tioning, which consists of scaling the system of linear equations by the preconditioner M−1

M−1Ax = M−1b, (4.16)

where M is, in the case of the CG method, an SPD matrix [9, 51]. Note that if M−1 = A−1,
then by the previous equation x = A−1b, and we have found the solution. Finding the
inverse of A is, however, costly. Indeed, M−1 is often available only as an action on a
vector, which may even be realized by an iterative method. Therefore, we often refer to
M−1 as the application or action of the preconditioner on a vector or matrix. Overviews
of general preconditioners can be found, e.g., in [51, 54, 55]. Of course, using specialized
preconditioners for the given problem usually yields better results. Examples of these are
the preconditioners for the Darcy flow problem [56] and 3 × 3 block matrices [57], which
are co-authored by the thesis author, and the preconditioners for FETI methods described
in Section 7.1.3.

The issue with the preconditioned system (4.16) is that M−1A is not generally an
SPD matrix. This problem can be circumvented because, for every square SPD matrix M ,
there exists a Cholesky factorization M = LLT . Using the Cholesky factorization, the
system (4.2) can be transformed into

L−1AL−T ˜︁x = L−1b, ˜︁x = LT x,

which is known as split or symmetric preconditioning [55]. Furthermore, the preconditioned
Hessian L−1AL−T is SPD and has the same eigenvalues as M−1A.

Denoting ˜︁A = L−1AL−T and ˜︁b = L−1b, we can solve the system

˜︁A˜︁x = ˜︁b
with the CG method to find ˜︁x, and then the solution x for the original problem. However, we
would have to factorize the preconditioning matrix M to obtain the factor L. Fortunately,
it turns out that this is not necessary. Let us write the update formulas for the modified
system

αk =
(︂˜︁rT

k ˜︁rk

)︂
/
(︂˜︁pT

k
˜︁A˜︁pk

)︂
,

˜︁xk+1 = ˜︁xk + αk ˜︁pk,

˜︁rk+1 = ˜︁rk − αk
˜︁A˜︁pk,

βk+1 =
(︂˜︁rT

k+1˜︁rk+1
)︂

/
(︂˜︁rT

k ˜︁rk

)︂
,

˜︁pk+1 = ˜︁rk+1 + βk+1 ˜︁pk.

Using xk = L−T ˜︁xk and the definition of ˜︁b, the residual can be rewritten as

˜︁rk = ˜︁b − ˜︁A˜︁xk = L−1 (b − Axk) = L−1rk.
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Substituting this into our update formulas and using the definition of ˜︁A, we get

αk =
(︂
rT

k M−1rk

)︂
/

(︃(︂
L−T ˜︁pk

)︂T
A
(︂
L−T ˜︁pk

)︂)︃
,

LT xk+1 = LT xk + αk ˜︁pk,

L−1rk+1 = L−1rk − αkL−1AL−T ˜︁pk,

βk+1 =
(︂
rT

k+1M−1rk+1
)︂

/
(︂
rT

k M−1rk

)︂
,

˜︁pk+1 = L−1rk+1 + βk+1 ˜︁pk.

Finally, substituting zk = M−1rk and pk = L−T ˜︁pk into the derived formulas yields the
preconditioned conjugate gradient (PCG) method illustrated in Algorithm 4.3, which only
requires the action of the preconditioner M−1.

Algorithm 4.3: PCG method
Input: A, M−1, x0, b

1 r0 = b − Ax0
2 z0 = M−1r0
3 p0 = z0
4 for k = 0, · · · :
5 s = Apk

6 αk =
(︂
rT

k zk

)︂
/
(︂
sT pk

)︂
7 xk+1 = xk + αkpk

8 rk+1 = rk − αks
9 zk+1 = M−1rk+1

10 βk+1 =
(︂
rT

k+1zk+1
)︂

/
(︂
rT

k zk

)︂
11 pk+1 = zk+1 + βk+1pk

Output: xk

Algorithm: CG method
Input: A, x0, b

1 r0 = b − Ax0
2
3 p0 = r0
4 for k = 0, · · · :
5 s = Apk

6 αk =
(︂
rT

k rk

)︂
/
(︂
sT pk

)︂
7 xk+1 = xk + αkpk

8 rk+1 = rk − αks
9

10 βk+1 =
(︂
rT

k+1rk+1
)︂

/
(︂
rT

k rk

)︂
11 pk+1 = rk+1 + βk+1pk

Output: xk

4.3 Deflation Preconditioner

Deflation for the CG method, also known as CG with preconditioning by projectors, was
introduced independently in [58–60]. The basic idea of deflation is to split the solution
into a deflation subspace and its A-conjugate complement. The solution in the deflation
subspace is obtained directly, and the conjugate gradients are restricted to the A-conjugate
complement of the deflation subspace. The CG method can be sped up significantly by
choosing the deflation space that contains the slowly converging parts of the solution.

4.3.1 Deriving Deflation Preconditioner

Let us define the deflation matrix as

W = (w1, w2, . . . , wm) ∈ Rn×m, m < n.
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Assuming that W is a full rank matrix and W is a subspace spanned by the columns of
W , we can denote a projector

P = I − W
(︂
W T AW

)︂−1
W T A = I − QA

onto the A-conjugate complement of W.
Given an arbitrary initial guess x−1 and defining the residual r−1 = b − Ax−1, we can

choose x0 to be
x0 = x−1 + W

(︂
W T AW

)︂−1
W T r−1. (4.17)

Multiplying from the left by W T A yields

W T Ax0 = W T Ax−1 + W T (b − Ax−1)

W T Ax0 = W T b (4.18)

o = W T b − W T Ax0 = W T r0. (4.19)

From (4.18), it follows that x0 is the exact solution of (4.2) in W and therefore (Equa-
tion (4.19)) r0 is orthogonal to W. If we use x0 as the initial guess for CG, we obtain the
InitCG method [61] illustrated in Algorithm 4.4.

Algorithm 4.4: InitCG method
Input: A, x−1, b, W

1 r−1 = b − Ax−1
2 x0 = x−1 + Qr−1
3 r0 = b − Ax0
4 p0 = r0
5 for k = 0, · · · :
6 s = Apk

7 αk =
(︂
rT

k rk

)︂
/
(︂
sT pk

)︂
8 xk+1 = xk + αkpk

9 rk+1 = rk − αks

10 βk+1 =
(︂
rT

k+1rk+1
)︂

/
(︂
rT

k rk

)︂
11 pk+1 = rk+1 + βk+1pk

Output: xk

If the columns of W are exact eigenvectors, then in exact arithmetic W is orthogonal
to Kk(A, r0) because the residuals will not have any components in the direction of the
eigenvectors spanning W. However, if W does not consist of the exact eigenvectors or the
computations are done in finite precision, this relation does not hold, and some sort of
correction needs to be employed.

The first problem is that p0 = r0 is not necessarily A-orthogonal to W. If this is the
case, then x1 has components in W. This is resolved by setting

p0 = P r0.
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Similarly, since rk+1 = r0 − A (α0p0 + · · · + αkpk), we use the same trick as above, so that
the update formula for the descent direction becomes

pk+1 = P rk+1 + βk+1pk.

Effectively, we are making the search direction A-conjugate to W by projecting the
components in W out of the residuals. This ensures that CG is not searching in W, but
only in its A-conjugate complement. Thus, the required splitting of the solution is achieved.
Setting the preconditioned residual of Section 4.2.4 to zk = P rk+1, we get that our method
is equivalent to the preconditioned CG method with the A-conjugate projection P taken
as the preconditioner [62]. This provides the values of αk and βk, but as shown in [50], it
is not necessary to modify the values of αk and βk.

Modifying Algorithm 4.4 so that the search directions are explicitly A-orthogonalized
with respect to W gives us the deflated conjugate gradient (DCG) method, as shown in
Algorithm 4.5.

Algorithm 4.5: DCG method
Input: A, x−1, b, W

1 P = I − QA
2 r−1 = b − Ax−1
3 x0 = x−1 + Qr−1
4 r0 = b − Ax0
5 p0 = P r0
6 for k = 0, · · · :
7 s = Apk

8 αk =
(︂
rT

k rk

)︂
/
(︂
sT pk

)︂
9 xk+1 = xk + αkpk

10 rk+1 = rk − αks

11 βk+1 =
(︂
rT

k+1rk+1
)︂

/
(︂
rT

k rk

)︂
12 pk+1 = P rk+1 + βk+1pk

Output: xk

Algorithm: CG method
Input: A, x0, b

1
2 r0 = b − Ax0
3
4
5 p0 = r0
6 for k = 0, · · · :
7 s = Apk

8 αk =
(︂
rT

k rk

)︂
/
(︂
sT pk

)︂
9 xk+1 = xk + αkpk

10 rk+1 = rk − αks

11 βk+1 =
(︂
rT

k+1rk+1
)︂

/
(︂
rT

k rk

)︂
12 pk+1 = rk+1 + βk+1pk

Output: xk

4.3.2 Preconditioned Deflated CG Method

An additional preconditioner can be incorporated into the previous algorithm. The
derivation is done in the same way as in Section 4.2.4. Carrying this out yields the
preconditioned DCG (PDCG) method, illustrated in Algorithm 4.6.

4.3.3 Preconditioning Effect of Deflation

In [50], it was shown that the deflated CG method is equivalent to solving a system with the
Hessian A preconditioned by P . Indeed, the following equivalence of spectra of operators
was established:

σ(P A) = σ(P T A) = σ(P P T A) = σ(P T AP ).
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Algorithm 4.6: PDCG method
Input: A, x−1, b, W

1 P = I − QA
2 r−1 = b − Ax−1
3 x0 = x−1 + Qr−1
4 r0 = b − Ax0
5 z0 = M−1r0
6 p0 = P z0
7 for k = 0, · · · :
8 s = Apk

9 αk =
(︂
rT

k zk

)︂
/
(︂
sT pk

)︂
10 xk+1 = xk + αkpk

11 rk+1 = rk − αks
12 zk+1 = M−1rk+1

13 βk+1 =
(︂
rT

k+1zk+1
)︂

/
(︂
rT

k zk

)︂
14 pk+1 = P zk+1 + βk+1pk

Output: xk

Assuming that the columns of the deflation matrix W are the exact eigenvectors of A,
it immediately follows that

P T AW = AW − AW
(︂
W T AW

)︂−1
W T AW = O = diag(0, . . . , 0)W ,

i.e., the columns of W are eigenvectors of P T A belonging to λ = 0 eigenvalues. Moreover,
if λ and v are an eigenpair of A but v is not a column of W , then we have W T v = o and
also W T Av = o. Therefore,

P T Av = Av − AW
(︂
W T AW

)︂−1
W T Av = Av = λv.

In other words, the DCG operator has the same spectrum as the Hessian A, except that
the eigenvalues belonging to eigenvectors comprising the deflation matrix W are shifted to
zero. As was mentioned in Section 4.2.3, the CG method ignores the space spanned by the
null space of the operator. This allows us to consider the effective condition number

κeff

(︂
P T A

)︂
= λmax

λmin
,

where λmax and λmin are, respectively, the largest and the smallest nonzero eigenvalues of
P T A or one of the spectrally equivalent operators.

4.3.4 Shifting the Eigenvalues

As shown in the previous section, if the deflation matrix W consists of the exact eigenvectors
of the Hessian A, then the associated eigenvalues are shifted to zero. However, if the
deflated eigenvectors are only approximate, the associated eigenvalues might not be zeroed
out completely but may instead be merely very small. The eigenvalues close to zero can
significantly slow down the convergence, as mentioned in Section 4.2.3.
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It was suggested in [63] that we can add a correction factor Q to the projector P ,
leading to a so-called projector with coarse problem correction

Pc = P + cQ,

where c ≥ 0. Replacing P in the DCG method with Pc, we have, similarly to the above,

P T
s AW = AW − AW

(︂
W T AW

)︂−1
W T AW + cW

(︂
W T AW

)︂−1
W T AW

= cW = diag(c, . . . , c)W ,

and since Q is orthogonal to eigenvectors not in W , we can show, in the same way as in
the previous section, that the rest of the eigenvalues are not changed. Therefore, using Pc

leads to the preconditioned operators having the same spectrum as the Hessian A, except
that the eigenvalues belonging to the columns of the deflation matrix W are shifted to the
parameter c. Moreover, choosing the parameter c to coincide with an eigenvalue that is not
deflated from the Hessian does not create an isolated eigenvalue in the deflated Hessian
spectrum.

Since

Pc = I − QA + Q = I − Q (A − I) ,

the cost of applying Pc compared to P is one additional vector-vector addition.
The numerical experiments in [63] showed that Pc also has a stabilizing effect when

the projections P , and especially the application of the inverse in P , are computed with
low accuracy.

4.3.5 Deflation Coarse Problem

The inverse in the projector P is called the coarse problem (CP), while W T AW is called
the coarse problem matrix. The coarse problem is usually solved by a direct solver.

Our implementation has a row-wise distribution of matrices. The CP matrix is assembled
in parallel, and the rows of the CP matrix are distributed among the same number of cores
used to solve the linear system. However, the dimension of the CP is smaller than the
dimension of A, quite often significantly (even just a few rows). If we tried to solve this
problem by a fully parallel approach, the cost of communication, as well as the required time,
could be extremely high. To solve this problem, the same strategy that was successfully
used for the solution of the FETI method CP [64, 65] is employed to solve the deflation CP.
First, an MPI sub-communicator is created, and then the whole CP matrix is distributed
over the available MPI ranks in the sub-communicator. The CP matrix is then factorized
on the sub-communicator. The forward and backward solves are performed by scattering
the whole input vector into the sub-communicator. The result is then distributed among
all cores in the global communicator. A heuristic chooses the size of the sub-communicator,
controlling the partial parallelization.
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4.3.6 Required Accuracy for the Coarse Problem Solution

While it was remarked that the CP is solved by a direct solver and, therefore, with full
machine precision, it will prove useful to examine the accuracy level that is actually needed
for the CP solution.

Given the relative tolerance ϵ for the outer iteration, the numerical experiments in [66]
showed that to achieve the same convergence as that obtained by using a direct solver, the
stopping criterion of the inner solver (CG) used for solving the CP has the form

||rinner
k || ≤ cϵ||binner||, 0 < c ≤ 1.

It was shown in [67], using the theory developed for the inexact Krylov subspace methods
[68, 69], that this accuracy is needed only in the first few iterations of the outer solver
and can be relaxed as we get closer to the solution of the original system. Their stopping
criterion has the form of

||rinner
k || ≤ cϵ

||router
i ||

||binner||, c > 0.

The constant c is guaranteed to exist. However, we do not know the upper bound, i.e., the
value that would lead to the maximal relaxation of the stopping criterion while keeping
the number of iterations required by the outer solver to converge the same as when the CP
is solved directly. The DCG method that uses this stopping criterion is called the adaptive
precision DCG method.

4.3.7 Multilevel Deflation

Given a hierarchy of the deflation matrices Wk, k ∈ {1, . . . , n} such that

W T
1 AW1 (4.20)

is a coarse problem matrix, and

W T
2 W T

1 AW1W2

is even coarser. It is assumed that this hierarchy continues until the coarsest problem
matrix reads

W T
n · · · W T

2 W T
1 AW1W2 · · · Wn.

Assume that DCG is used to solve (4.2) with W1 being the deflation matrix. If W1 is
large, then it would be very costly to factorize the coarse problem matrix (4.20). Instead,
the coarse problem can be solved again by a deflated method, where the deflation matrix
is W2. This nesting of DCG solvers for CP can continue until the coarsest CP is small
enough to be solved easily by a direct method. The resulting method is called multilevel or
nested deflation.

Numerical experiments combining the multilevel deflation with the shifted projector Pc

and the adaptive precision of the previous sections can be found in [64].
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4.3.8 Implementation

Our implementation of the deflation preconditioner, called PCDEFLATION [46], is available
in PETSc. It supports complex systems of linear equations, i.e., A ∈ Cn×n, x ∈ Cn, b ∈ Cn,
as well as the complex deflation space W ∈ Cn×m. Moreover, other Krylov subspace
methods besides CG, e.g., MINRES and GMRES, for indefinite and possibly non-Hermitian
systems of linear equations, are supported. Effectively, supporting complex numbers only
requires swapping the transpose for the Hermitian transpose in the deflation operator [70].

Other features of PCDEFLATION are:

• Computing only the initial guess as in InitCG (Algorithm 4.4).

• The default deflation space is the Haar wavelet deflation introduced in [71]. Other
wavelet-based deflation spaces [50] are available, as well as simple aggregation. Of
course, the user can provide their own deflation space, e.g., eigenvectors obtained
with SLEPc [72].

• Additional preconditioners (Section 4.3.2) are supported, and any PETSc precondi-
tioner from the multitude available can be used.

• The coarse problem correction (Section 4.3.4) is available.

• The coarse problem is solved efficiently on the sub-communicator as described in
Section 4.3.5. The default size of the sub-communicator is selected by a heuristic
based on the problem size and the number of available cores.

• Nested or multilevel deflation, which is described in Section 4.3.7, is supported. It
automatically selects Flexible CG or Flexible GMRES as the solvers for the nested
coarse problems.

• Related to the previous point, the preconditioner supports adaptive precision across
every level (Section 4.3.6).

All preconditioner options can be controlled programmatically or with command line
arguments.

4.3.9 Results of the Deflated CG Method

In [64], we compared several methods for the solution of the FETI coarse problem, which is
described in a later section (Section 7.1.2), for the 3D linear elasticity cube of Section 3.3.4.
The FETI coarse problem is solved on the sub-communicators in the same way as described
in Section 4.3.5, which is in the results denoted as strategy S1. Strategy S2 employs an
LU direct solver to compute the explicit inverse of the coarse problem, with multiple
sub-communicators computing a part of the inverse. The deflation uses 100 eigenvectors
corresponding to the smallest eigenvalues. These were computed using the Krylov-Schur
method implemented in SLEPc with the default settings and a tolerance of 10−4. The
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CG and DCG methods had the relative stopping criterion of 10−8, which was sufficient
to achieve the relative violation of the KKT conditions for the FETI primal problem
(7.8) below 10−5. The results computed on the ARCHER (Section 3.2.1) and Salomon
(Section 3.2.4) supercomputers for different numbers of FETI coarse problem solves are
presented in Figures 4.2 to 4.4.

The results showed that the deflation preconditioner applied to the CG method, i.e.,
the DCG method, is the best way to solve the FETI coarse problem for a moderate number
of coarse problem solves. Moreover, together with the unpreconditioned CG, the DCG
method exhibits the best scalability.
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Figure 4.2: Weak scaling: Coarse problem solver setup + 100 coarse problem solves. One
subdomain is assigned to one core [64].
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Chapter 5

Projection-Based Quadratic
Programming Algorithms

This chapter focuses on algorithms that use the projections of Section 2.3 to keep iterates
feasible. Our exposition will focus on solving QP problems with box constraints

Ω = {x ∈ Rn | l ≤ x ≤ u} ,

but the algorithms can be extended to other sets for which we have inexpensive exact
projections. We admit partially constrained problems, i.e., we admit li = −∞ and uj = +∞
for some components i and j.

The main focus of this chapter is on the MPRGP algorithm, which is described in the
first section.

The second section introduces modifications to the most expensive step of the MPRGP
algorithm, achieving a geometric mean of speedups of nearly 3 with one variant and over
6 with a variant combining MPRGP and the spectral projected gradient method on the
problems for which the methods were designed.

The last section introduces a new variant of preconditioning for the MPRGP method.
The MPRGP method equipped with the original preconditioning is sometimes even slower
than the unpreconditioned MPRGP. The modifications in the previous section prove to be
the key to making the new preconditioned MPRGP method extremely fast. The MPRGP
equipped with the new preconditioner and the modifications achieved speedups between
5.1 and 13.4 compared to the standard unpreconditioned MPRGP.

The improvements to the MPRGP algorithm and preconditioning described in the last
two sections are the own work of the author and are among the key results of this thesis.
The results are supported by articles [64, 73].

5.1 MPRGP Algorithm

QP problems with box constraints can be solved using the modified proportioning with
gradient projections (MPGP) or modified proportioning with reduced gradient projections

59
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(MPRGP) algorithms [10, 74]. We will focus on the MPRGP variant, noting the differences
with MPGP in the following description of the algorithm. The simplification to the feasible
set with only one of the bound constraints is straightforward. It is also possible to adapt
the algorithm for various other constraints, such as elliptic constraints [75, 76].

As the name of the algorithm suggests, it utilizes gradient information for minimization,
placing it among the first-order optimization methods. While MPRGP does not directly
work with active and free sets, the information about active and free sets is hidden in the
gradient splitting. Consequently, MPRGP is considered an active set algorithm.

In each iteration, MPRGP performs one of three types of steps: unconstrained min-
imization, expansion, or proportioning. Since our Hessian A is SPS, the unconstrained
minimization is performed by a step of the conjugate gradient method described in Sec-
tion 4.2. The active set is expanded by the expansion step, which consists of a maximal
feasible unconstrained minimization, in our case a partial CG step to the box, followed by
a fixed step length gradient projection. Finally, a proportioning step, designed to reduce
the active set, consists of a step of the steepest descent method (Section 4.1).

To properly describe the algorithm, we first need to define the gradient splitting. Let
g = Ax − b be the gradient of the cost function f(x) and let

A = {i | xi = li or xi = ui} , F = {i | li < xi < ui}

be the active and free set, respectively. Then the gradient splitting is defined component-
wise for i ∈ {1, 2, . . . , n} and is computed after each gradient evaluation. The free gradient
gf is defined as

gf
i =

⎧⎨⎩0 if i ∈ A,

gi if i ∈ F .
(5.1)

The reduced free gradient gr is defined as

gr
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if i ∈ A,

min
(︂

xi−li
α , gi

)︂
if i ∈ F and gi > 0,

max
(︁xi−ui

α , gi
)︁

if i ∈ F and gi ≤ 0,

where α ∈ (0, 2||A||−1] is used as a priori chosen fixed step length in the expansion step [74].
Typically, the parameter is given by

α = αu||A||−1,

where αu ∈ (0, 2] is a user-selected constant, and ||A||−1 is approximated by the power
method. Effectively, gf is the gradient on the free set, and gr is the free gradient that is
reduced such that a steepest descent-type step in its opposite direction, that is −gr, with
the step length α, does not leave the feasible set Ω. A step in either of these directions can
expand the active set but cannot reduce it.
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The chopped gradient gc is defined as

gc
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if i ∈ F ,

min(gi, 0) if xi = li,

max(gi, 0) if xi = ui.

A step in the direction −gc may reduce the active set but cannot expand it.
The next ingredient is the projection onto the feasible set Ω, which by Section 2.3 is

defined as
[PΩ(x)]i = min {ui, max {li, xi}} , i ∈ {1, . . . , n}.

Finally, the projected gradient is defined as gP = gf + gc. The decrease in its norm
serves as the natural stopping criterion for the algorithm since gP = o is equivalent to
satisfying the Karush-Kuhn-Tucker conditions of Section 2.4.1 for a box-constrained QP
problem.

These are all the necessary ingredients to summarize MPRGP in Algorithm 5.1, which
is explained in more detail in the following text.

Algorithm 5.1: MPRGP method
Input: A, x0 ∈ Ω, b, Γ > 0, α ∈ (0, 2||A||−1]

1 g0 = Ax0 − b, p0 = gf
0 , k = 0

2 while ||gP
k || is not small:

3 if ||gc
k||2 ≤ Γ2||gf

k ||2:
4 αfeas

k = max{α | xk − αpk ∈ Ω}
5 αcg

k = gT
k pk/pT

k Apk

6 if αcg
k ≤ αfeas

k :
7 CG step - Algorithm 5.2
8 else:
9 Expansion step - Algorithm 5.3;

10 else:
11 Proportioning step - Algorithm 5.4;
12 k = k + 1

Output: xk

Algorithm 5.2: CG step
1 xk+1 = xk − αcg

k pk

2 gk+1 = gk − αcg
k Apk

3 βk = pT
k Agf

k+1/pT
k Apk

4 pk+1 = gf
k+1 − βkpk
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Algorithm 5.3: Expansion step
1 xk+ 1

2
= xk − αfeas

k pk

2 gk+ 1
2

= gk − αfeas
k Apk

3 xk+1 = PΩ(xk+ 1
2

− αgf
k )

4 gk+1 = Axk+1 − b

5 pk+1 = gf
k+1

Algorithm 5.4: Proportioning step
1 αsd

k = gT
k gc

k/(gc
k)T Agc

k

2 αfeas
k = max{α | xk − αgc

k ∈ Ω}
3 if αfeas

k < αsd
k :

4 αsd
k = αfeas

k

5 xk+1 = xk − αsd
k gc

k

6 gk+1 = gk − αsd
k Agc

k

7 pk+1 = gf
k+1

In each iteration, the algorithm checks that the current approximation of the solution,
xk, is proportional1

||gc
k||2 ≤ Γ2||gf

k ||2, Γ > 0. (5.2)

If this inequality does not hold, the chopped gradient gc dominates the norm of the
projected gradient gP , depending on the value of the parameter Γ (typically Γ = 1).
Therefore, we need to release some components from the active set by a proportioning
step. This proportioning step consists of a single step of the steepest descent method in
the direction −gc. In the case of the box and similar constraints, the step may need to be
shortened so that it does not leave the feasible set.

On the other hand, if the current solution is proportional, i.e., (5.2) holds, then the
free gradient gf dominates the norm of the projected gradient gP , and we focus on the
minimization of the free gradient gf . First, we compute αcg as the optimal step length
for minimization in the direction −p and αfeas as the maximum feasible step length in
this direction that does not leave the feasible set. If αcg ≤ αfeas, we can perform an
unconstrained minimization using a standard CG step; otherwise, we proceed with the
expansion step. Note that initially, and after both the expansion and proportioning
steps, the next minimization direction is set to p = gf , while the CG steps set the next
minimization direction A-orthogonal to the previous one.

The expansion consists of the so-called half-step, which is a step with the maximum step
length αfeas in the direction −p. The half-step expands the active set, but typically only by
one component. Then a step in the direction −gf with a fixed step length α ∈ (0, 2||A||−1]

1We note that Dostál [10] employs a strict proportionality condition that replaces gf with gr. This
is needed for the convergence proof but reduces the proportionality cone as ||gr|| ≤ ||gf ||. The MPGP
algorithm uses the proportionality condition as given by Equation (5.2).
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is performed2. Notice that using either gf or gr is equivalent, since we have

xk+1 = PΩ(xk+ 1
2

− αgf

k+ 1
2
) = xk+ 1

2
− αgr

k+ 1
2
,

i.e., due to gr construction, the step with gr does not need to be projected onto the feasible
set. The active set is expanded in a component j if this component is in the free set and
either

gj > 0 and αgj ≥ xj − lj

or
gj ≤ 0 and αgj ≤ xj − uj .

Therefore, α controls how large a component of the gradient (in the correct direction)
has to be to expand the active set in the given component. Larger values of α have the
potential to expand the active set in more components. However, even with the largest
possible value of the step length α = 2||A||−1, the active set may not be expanded at all.
We refer to this expansion step variant as Fixed due to the use of the fixed step length.

Finally, the maximum feasible step length used in the expansion and, depending on the
constraints, in the proportioning step can have a closed form, e.g.,

αfeas = max{α | x − αp ∈ Ω}

= min

⎧⎨⎩
⎧⎨⎩(xi − li) /pi

⃓⃓⃓⃓
⃓⃓ pi > 0,

i ∈ {1, . . . , n}

⎫⎬⎭ ∪

⎧⎨⎩(xi − ui) /pi

⃓⃓⃓⃓
⃓⃓ pi < 0,

i ∈ {1, . . . , n}

⎫⎬⎭
⎫⎬⎭ ,

in the case of the box constraints.
The operation count for each of the three steps is summarized in Table 5.1. We

argue that, in most cases, the cost of a step primarily depends on the number of Hessian
multiplications it performs.

Note that either bound may be omitted in the formulation of the algorithm. If both
bounds are omitted, the algorithm is equivalent to the standard CG method. The CG
method in finite precision can suffer from the loss of orthogonality of the search directions
and subsequent delay in convergence [54, 77, 78]. The MPRGP method naturally limits
this effect due to the explicit gradient evaluation whenever the expansion step is computed.

2MPGP uses the direction −g instead of −gf .
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Step Hess. mult. Dot prod. Vec. update Grad. split.
CG 1 2 3 1
Expansion: Fixed 2 1 5 2
Proportioning 1 1 3 1
Expansion: Projected CG 2 1 3 1

+ Fallback 1 0/1 1/1 0/4 0/1
+ Fallback 2 0/1 1/1 0/4 1/2

Expansion: SPG 2 1+ 4+ 1
Table 5.1: Number of operations per MPRGP step. The bottom part of the table contains
the newly proposed variants of the expansion step introduced in the following sections.

5.2 MPRGP Expansion Modifications

As discussed in the previous section, the time to solution is primarily determined by the
number of Hessian multiplications. Therefore, we need to minimize the overall number of
Hessian multiplications to speed up the MPRGP algorithm.

In our previous work [79], we demonstrated that MPRGP may need many expansion
steps to identify the active set. This is because standard expansion steps often enlarge the
active set by only one or a few components. Moreover, the expansion step is approximately
twice as expensive as the other steps due to it requiring two Hessian multiplications instead
of one. Our idea is to modify the expansion step to enlarge the active set faster. Such
modifications should lead to a reduction in the number of expansion steps, as well as the
overall number of Hessian multiplications.

In [79], the fixed step length in gradient projection was replaced with the steepest
descent step length or its approximation, computed using various gradients used throughout
the method. The steepest descent step length could significantly reduce the number of
Hessian multiplications needed to compute the solution, despite the expansion step needing
three Hessian multiplications. However, the performance was highly dependent on the
scaling factor αu of the step length. The article also introduced an algorithm (MPRGP
with projected CG) in which the expansion step was performed by projecting the full
unconstrained CG step. This latter scheme significantly outperformed the classic MPRGP
algorithm and is the focus of the next two subsections.

The last subsection deals with a combination of the MPRGP algorithm and the spectral
projected gradient method. The modification is based on our experience comparing the
two algorithms in [73], where we observed that the spectral projected gradient method can
converge very quickly for certain problems but only to a lower satisfaction of the KKT
conditions, while MPRGP can converge to full machine precision.

5.2.1 MPRGP with Projected CG Expansion Step

Recall that the expansion consists of the half-step, followed by a fixed step length gradient
projection. The half-step is a CG step with the step length reduced to ensure that the
computed approximation is within the feasible set, i.e., xk+ 1

2
∈ Ω.
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Since our goal is to expand the active set faster, it seems reasonable to replace the
half-step with the full CG step, followed by a subsequent projection onto the feasible set.
To be more specific, our expansion step becomes

xk+1 = PΩ(xk − αcg
k pk),

followed by resetting pk+1 = gf
k+1. Note that realizing the expansion in this way simplifies

the implementation, as we can always compute the CG step and then calculate the gradient
using the CG recurrence when the step is feasible; otherwise, we project the solution
onto the feasible set and explicitly recompute the gradient. Algorithm 5.5 illustrates the
implementation. It replaces the if…else block on lines 6–9 in Algorithm 5.1. We call this
algorithm MPPCG (Modified Proportioning with Projected Conjugate Gradient).

Algorithm 5.5: Projected CG step
1 xk+1 = xk − αcg

k pk

2 if αcg
k ≤ αfeas:

3 gk+1 = gk − αcg
k Apk

4 βk = pT
k Agf

k+1/pT
k Apk

5 pk+1 = gf
k+1 − βkpk

6 else:
7 xk+1 = PΩ(xk+1)
8 gk+1 = Axk+1 − b

9 pk+1 = gf
k+1

As shown in Table 5.1, this projected CG expansion variant has the same or a better
operation count compared to the other expansion variants.

Table 5.2 compares the standard MPRGP and MPPCG on 3D linear elasticity with
contact, as described in Section 3.3.4, and on training SVMs on three datasets, as described
in Section 3.3.6. The contact problem uses TFETI, as described in Chapter 7, with regular
decomposition into 1, 000 subdomains (10 in each direction) with 27, 000 elements per
subdomain (30 in each direction), making a total of 81, 812, 703 (undecomposed) degrees
of freedom (DOFs). The problem requires an outer solver (SMALE-M of Section 6.3) with
parameters η = 0.1, ρ = 1.1||A||, M = 100||A||, and β = 10. The results were obtained
with MPRGP/MPPCG parameter Γ = 1 and with the fixed expansion step length value of
α = 1.9||A||−1, which is the recommended value in [79]. The stopping tolerance relative to
the right-hand side was 10−6 for the contact problem and 10−1 for the SVMs.

We note that the computation of the largest eigenvalue λmax = ||A|| usually employs
the power method [51], which requires some additional Hessian multiplications3. The
projected CG expansion step does not require the largest eigenvalue estimates and thus
saves some additional Hessian multiplications. We do not count the number of Hessian
multiplications required by the power method in the presented results.

3PERMON defaults for the power method are the relative tolerance of 10−4 with a maximum of 50
iterations. The typical number of iterations is in the low tens but can reach the maximum number of
iterations.
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Problem Expansion type Hess. mult. CG Exp. Prop.

3D Contact Fixed 323 144 83 3
Projected CG 292 171 53 5

SVM: Australian Fixed 195 8 92 2
Projected CG 83 16 32 2

SVM: Diabetes Fixed 630 2 313 1
Projected CG 133 13 58 3

SVM: Ionosphere Fixed 381 21 179 1
Projected CG 125 14 54 2

Table 5.2: Comparison of the number of Hessian multiplications and the number of each
step [79].

Looking at the number of Hessian multiplications, the projected CG variant, compared
to the standard expansion variant, achieved a speedup of 1.10 for the contact problem and
between 2.34 and 4.73 for the SVMs.

5.2.2 MPRGP with Projected CG Expansion Step and Fallback

In some cases, the projected CG expansion step can lead to an increase in the value of
the cost function [10]. We illustrate this for a 2D problem in Figure 5.1. Clearly, the CG
step finds the unconstrained minimizer of the cost function, but the subsequent projection
onto the feasible set places us on a higher contour line, i.e., increases the value of the cost
function. In this case, the standard expansion would put us closer to the solution. Yet,
unless α happens to be such that the fixed gradient projection finds the exact solution,
which in this case it cannot, both approaches converge in the next iteration. Note that
in this example, the opt step length with αu = 1 described in [79], with any combination
of the allowed vectors for both the computation of the step length and the line search
direction, would converge to the exact solution in a single expansion step.

Figure 5.1: Projected CG step illustration (based on [10]). The ellipses are the cost function
contour lines. The feasible set is on and above the red horizontal line. The red cross (X)
on the horizontal line is the solution. The point x1 is reached by the first unconstrained
CG step starting with x0. The point x2 would be reached by the expansion step with the
largest admissible α, and the point PΩ (x1 + αcg

1 p1) would be reached by the projected CG
expansion step.

To illustrate our previous point that the projected CG expansion step can increase the
cost function, we increased the relative tolerance on the projected gradient to 10−4 for the
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SVMs. We are aware that this tolerance is too strict and overfits the SVM model [43], but
the problems are valid QP problems for our illustrative purposes. Preliminary results are
reported in Table 5.3.

Dataset Exp. type Hess. Mult. CG Exp. Prop. Cost inc. Fall.
Australian Fixed 4567 1134 1704 24 423 0
Australian Projected CG 3571 565 1455 95 127 0
Australian Fallback 1 3298 1015 1014 36 218 218
Australian Fallback 2 2160 747 662 32 74 56
Diabetes Fixed 1108 124 491 1 18 0
Diabetes Projected CG 1439 113 627 71 109 0
Diabetes Fallback 1 292 84 96 1 14 14
Diabetes Fallback 2 292 84 96 1 14 14
Ionosphere Fixed 628 149 237 4 8 0
Ionosphere Projected CG 265 104 78 4 6 0
Ionosphere Fallback 1 320 109 89 5 27 27
Ionosphere Fallback 2 277 104 78 5 13 11

Table 5.3: Comparison of MPRGP expansion step variants computing an intentionally
overfitted SVM model with the relative tolerance of 10−4. The fallback expansion is defined
in the latter part of this section. The comparison includes the number of cost function
increases and the number of fallback steps in the last two columns, respectively.

It can be observed that the method with the projected CG expansion outperforms the
standard method for the Australian and Ionosphere datasets. However, there is a slowdown
of 30% on the Diabetes dataset.

We can see a marked increase in the number of proportioning steps for the Australian
dataset and especially for the Diabetes dataset. This suggests that, at some points,
the expansion of the active set may be too aggressive. Moreover, when comparing the
convergence curves in Figures 5.2 and 5.3 for the Diabetes dataset, the convergence of the
projected CG variant is much faster in the first approximately 30 iterations. However, after
that, one expansion step leads to a significant increase in the value of the cost function.

To avoid the increase in the value of the cost function (as the standard MPRGP
decreases the value of the cost function monotonically), we propose falling back to the
fixed gradient projection expansion when the projected conjugate gradient expansion step
would increase the value of the cost function. Algorithmically, we replace Algorithm 5.5
with Algorithm 5.6, where the fallback condition is

f(xk+1) > f(xk). (5.3)

We refer to this condition as Fallback 1. The step length for our numerical experiments is
chosen to be α = ||A||−1, which maximizes the decrease in the value of the cost function.
Moreover, enforcing expansion to not increase the value of the cost function guarantees the
convergence of the algorithm by Proposition 5.12 in [10]. The effect on the convergence
curve for the new variant on the Diabetes dataset can be observed in Figure 5.4.

The drawback of this fallback scheme is that we now need to estimate the largest
eigenvalue of the Hessian to select the fixed step length α. Nevertheless, from the results
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Figure 5.2: SVM - Diabetes dataset: First 100 iterations of the standard MPRGP.
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Figure 5.3: SVM - Diabetes dataset: First 100 iterations of MPPCG.
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Algorithm 5.6: Projected CG step with fallback
1 xk+1 = xk − αcg

k pk

2 if αcg
k ≤ αfeas:

3 gk+1 = gk − αcg
k Apk

4 βk = pT
k Agf

k+1/pT
k Apk

5 pk+1 = gf
k+1 − βkpk

6 else:
7 xk+1 = PΩ(xk+1)
8 gk+1 = Axk+1 − b
9 if fallback:

10 xk+ 1
2

= xk − αfeas
k pk

11 gk+ 1
2

= gk − αfeas
k Apk

12 xk+1 = PΩ(xk+ 1
2

− αgf

k+ 1
2
)

13 gk+1 = Axk+1 − b

14 pk+1 = gf
k+1
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Figure 5.4: SVM - Diabetes dataset: First 100 iterations of MPPCG with Fallback 1.
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in Table 5.3, MPPCG with Fallback 1 expansion step consistently outperforms MPRGP
with the fixed step length expansion step. The same could be said when comparing the
new variant with the projected CG variant without the fallback, except that there is a 21%
increase in the number of Hessian multiplications for the Ionosphere dataset.

Upon examining the convergence of MPPCG with Fallback 1 for the Ionosphere dataset
in Figure 5.5, we observe a long string of fallback steps between iterations 75 and 95.
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Figure 5.5: SVM - Ionosphere dataset: First 100 iterations of MPPCG with Fallback 1.

This suggests that the fixed step length expansion is not expanding the active set
quickly enough. Therefore, we relax our Fallback 1 scheme, allowing an increase in the
cost function value if the next step of the MPRGP algorithm is not the proportioning step.
Intuitively, we do not want to excessively expand the active set, only for the next step to
immediately release some of the active components. The new fallback condition, called
Fallback 2, then reads

f(xk+1) > f(xk) ∧ ||gc
k+1|| > Γ||gf

k+1||.

This latest fallback scheme once again improves convergence (see Table 5.3), and in
the case of the Ionosphere dataset, it nearly recovers the performance of the non-fallback
projected CG expansion variant. For comparison with Figure 5.5, the convergence curve
for the Ionosphere dataset solved with the Fallback 2 variant is provided in Figure 5.6.

The number of operations added to the projected CG expansion step for both fallback
variants is summarized in Table 5.1. Since the fallback criterion check is done in each
expansion step, the first value corresponds to the number of operations required for
evaluating the fallback condition, i.e., when the fallback condition is false. The second
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Figure 5.6: SVM - Ionosphere dataset: First 100 iterations of MPPCG with Fallback 2.

value is for both checking the fallback condition and carrying out the fallback step, i.e.,
when the fallback condition is true.

As mentioned earlier, the presented results are considered preliminary. This is because
the comparison of the value of the cost function should take into account the tolerance of
the computation. In fact, Table 5.3 reports the number of cost function increases, which are
counted whenever the Fallback 1 criterion, given by Equation (5.3), is satisfied. We can see
that there is a large number of cost function increases for the standard MPRGP, which is
guaranteed to have a monotonic decrease. This is due to the cost function nearly stagnating
at its minimum, while the projected gradient has not yet reached the stopping criterion.
However, in finite precision, the cost function can increase in the last few represented
decimal digits. It is possible that taking into account the computational tolerance in the
fallback schemes could further improve their performance. There is also the possibility of
developing additional fallback schemes, e.g., performing fallback if the Fallback 2 criterion
is true, but only if some of the components that would be released by the proportioning
step were added by the current expansion step.

The convergence bound of the standard MPRGP method is [10]

f(xk+1) − f(x∗) ≤ η (f(xk) − f(x∗)) , η ∈
[︃3

4 , 1
)︃

,

where the constant η depends on the smallest and the largest eigenvalue of A and the
parameters α and Γ. Using the convergence bound, we can propose a fallback condition

f(xk+1) − f(x∗) > η (f(xk) − f(x∗)) ,
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which can be reordered as

f(xk+1) − ηf(xk) > (1 − η) f(x∗). (5.4)

Of course, we typically do not have the optimal value f(x∗) before we find the solution. An
underestimate f(x) of the optimal cost f(x∗) could be used instead. Using Equation (5.4)
as the fallback criterion in the MPPCG method would ensure that the method has at least
as good a bound on convergence as the standard MPRGP method.

5.2.3 MPRGP with Efficient Gradient Projections

Our comparison in [73] of MPRGP, MPPCG, and a variant of the spectral projected
gradient (SPG) [80] algorithm showed that, in cases with many active constraints, SPG
methods can achieve much better performance than the MPRGP-type methods. On the
other hand, the MPRGP and MPPCG algorithms are usually better when the active set is
small because they benefit from long chains of CG steps for unconstrained minimization.
Additionally, it was briefly remarked that the SPG algorithm can find the solution only to
a limited precision.

In the following text, we will describe an SPG method, showcase the convergence of
the SPG and MPRGP-type methods, and finally develop a method combining MPRGP
and SPG.

5.2.3.1 Spectral Projected Gradient Method

The basic iteration of the standard gradient projection (GP) method along the feasible
direction [9] is given by

xk+1 = xk + νkdk = xk + νk (PΩ(xk − αkgk) − xk) ,

where dk is a feasible decrease direction for the objective function at xk, αk ∈ [αmin, αmax],
0 < αmin ≤ αmax, is the step length parameter, and νk ∈ (0, 1] is the line search parameter
determined by a backtracking procedure implementing a monotone Armijo rule [9] or its
nonmonotone version [81].

The GP method is described in Algorithm 5.8. Observe that for M = 1 at step 3 of
the algorithm, the standard Armijo rule is obtained, while for M > 1, a nonmonotone
Grippo-Lampariello-Lucidi (GLL) line search [81] is performed. A natural stopping criterion
for GP schemes is based on the decrease in the norm of the descent direction.

When the step length αk is defined by some type of Barzilai-Borwein step length (see
Section 4.1.1), the GP method is known as the spectral projected gradient method [80, 82].
The spectral prefix in the name is added because the step lengths sweep the spectrum of
the Hessian [83, 84].

Our implementation of the SPG method employs the box constraints-aware step length
rule BoxVABBmin [83]. The BB2 step length defined by Equation (4.5) is modified according
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Algorithm 5.7: GP method
Input: x0 ∈ Ω, δ, σ ∈ (0, 1), M ∈ N, 0 < αmin ≤ αmax, α0 ∈ [αmin, αmax]

1 for k = 0, 1, . . . :
2 dk = PΩ (xk − αkgk) − xk

3 νk = 1; fref = max{f(xk−i), 0 ≤ i ≤ min(k, M − 1)}
4 while f(xk + νkdk) > fref + σνkgT

k dk:
5 νk = δνk;
6 xk+1 = xk + νkdk

7 define the step length αk+1 ∈ [αmin, αmax]
Output: xk+1

to the free set in the last two iterations

αBoxBB2
k =

[sk−1]TIk−1
[yk−1]Ik−1

|| [yk−1]Ik−1
||2

,

where Ik−1 is a subset of indices defined as follows:

Ik−1 = {1, 2, . . . , n} \ Jk−1,

Jk−1 = {i | ([xk−1]i = li ∧ [xk]i = li) ∨ ([xk−1]i = ui ∧ [xk]i = ui)}.

The BoxVABBmin step length then reads

αBoxVABBmin
k =

⎧⎪⎪⎨⎪⎪⎩
min

{︂
αBoxBB2

j

⃓⃓⃓
j = max{1, k − mα}, . . . , k

}︂
if αBoxBB2

k

αBB1
k

< τk

αBB1
k otherwise,

where mα is a nonnegative integer, τ1 ∈ (0, 1) and the parameter τk is updated in accordance
with the following procedure:

τk+1 =

⎧⎪⎪⎨⎪⎪⎩
τk
ϑ if αBoxBB2

k

αBB1
k

< τk

ϑτk otherwise

with ϑ > 1.

5.2.3.2 Convergence of MPRGP-Type and SPG Methods

We monitored the convergence of the MPRGP, MPPCG, and SPG methods on the generated
box-constrained problems described in Section 3.3.1 to better understand the behavior
of these methods. The initial guess was set halfway between the box constraints. The
reported numbers of Hessian multiplications in the remainder of this section include the
Hessian multiplications used by the power method to determine the fixed step length for
MPRGP.

The MPRGP and MPPCG variants use the same parameters as those in the previous
section. The SPG algorithm parameters are α0 = 1, αmin = 10−10, αmax = 106, M = 10,
σ = 10−4, δ = 0.5, and BoxVABBmin step length rule uses τ1 = 0.5 and mα = 2.
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Figure 5.7: BQP1: Convergence curves for MPRGP, MPPCG, and SPG.
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Figure 5.8: BQP2: Convergence curves for MPRGP, MPPCG, and SPG.
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Figure 5.9: BQP3: Convergence curves for MPRGP, MPPCG, and SPG.

Figures 5.7 to 5.9 compare the convergence of each method in terms of the relative
norms of the error and the projected gradient.

We can clearly see that the SPG method can achieve the norm of the relative error of
only about 10−6 and the norm of the relative projected gradient between 10−8 and 10−10

before it stagnates, while the MPRGP-type algorithms can converge up to the computer
precision (IEEE 754 double).

On the other hand, the SPG method converges to its maximum precision in approxi-
mately the same number of iterations for each problem, whereas the MPRGP-type methods
require more Hessian multiplications with the increasing percentage of active set compo-
nents, i.e., between problems. The increase in the number of Hessian multiplications is
relatively low for the MPPCG method and quite high for the standard MPRGP.

Additionally, we plot detailed convergence curves for each method and problem in
Figures 5.10 to 5.18, which include the number of correctly and incorrectly identified active
set components. Additionally, we refer to the relative norms of the error and the projected
gradient collectively as the relative error on the left y-axis. We note that the SPG method
is by far the quickest to identify the active set, and the number of Hessian multiplications
required to achieve 99.5% correct active set identification increases fairly slowly with the
increasing size of the active set. The MPPCG method is much faster at identifying the
active set than the standard MPRGP.

The inability of the SPG method to converge to higher precision seems to be related to
the failure in the GLL line search, which is indicated when ν ≤ eps||d||, where ν is the
step length, eps is the machine epsilon4, and d is the descent direction. The failure means
that, given the direction d, there is no meaningfully large step length ν for which there is
a sufficient decrease in the cost function. In such a case, we set νk = eps. The first failure

4eps = 2−52 ≈ 2.22e−16
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of the line search is indicated in the convergence figures.
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Figure 5.10: BQP1: Progress of MPRGP.

0 500 1000 1500 2000 2500

Number of Hessian multiplications

10−18

10−15

10−12

10−9

10−6

10−3

100

R
el
a
ti
v
e
er
ro
r

0

200

400

600

800

1000

1200

1400
N
u
m
b
er

o
f
a
ct
iv
e
co
m
p
o
n
en
ts

||x− x̂||/||x̂||

||gP ||/||b||

Last expansion (x = 1110)

99.5% correct active set (x = 637)

Correct active set components

Wrong active set components

Last proportioning (x = 1188)
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Figure 5.12: BQP1: Progress of SPG.
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Figure 5.13: BQP2: Progress of MPRGP.
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Figure 5.14: BQP2: Progress of MPPCG.
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Figure 5.15: BQP2: Progress of SPG.
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Figure 5.16: BQP3: Progress of MPRGP.
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Figure 5.17: BQP3: Progress of MPPCG.
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Figure 5.18: BQP3: Progress of SPG.

5.2.3.3 MPSPG Algorithm

The presented results indicate that a hybrid algorithm, leveraging the fast active set
identification of the SPG method combined with the efficient unconstrained minimization
of the MPRGP method and its capability to converge to high precision, would be of interest.

In principle, there are two possibilities for combining the two methods. The first one
is to start with the SPG method and then switch to the MPRGP or MPPCG method.
There are many heuristics for the switching criterion, such as reaching some norm of the
projected gradient, the active set not changing (sufficiently) for a number of iterations, and
the (infinity) norm of the descent direction d or the step length ν being below a threshold.
The second option is to replace the expansion step in the MPRGP algorithm with an SPG
method.

Here, we present the second variant. We integrate the SPG algorithm by replacing the
expansion step in Algorithm 5.1 with Algorithm 5.8, using the same notation and parameters
as in Algorithm 5.7. We call the combined method MPSPG (Modified Proportioning with
Spectral Projected Gradient). Notice that the expansion step can now also release some
components from the active set.

We can omit the expansion half-step in line 1 in Algorithm 5.8 and move the com-
putation of dk before the computation of αcg

k in line 5 in Algorithm 5.1. This allows us
to merge the matrix-vector multiplication of Apk and Adk into a single matrix-multiple
vectors multiplication, improving the locality of matrix entries and providing additional
opportunities for data reuse [85]. We call this variant with merged/fused matrix-vector
multiplication MPSPGf. It was shown in [86] that, with a good algorithm, the matrix-
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Algorithm 5.8: SPG expansion step
1 xk+ 1

2
= xk − αfeas

k pk

2 gk+ 1
2

= gk − αfeas
k Apk

3 define the step length αk ∈ [αmin, αmax] by BoxVABBmin

4 dk = PΩ
(︂
xk+ 1

2
− αkgk+ 1

2

)︂
− xk+ 1

2

5 νk = 1
6 fref = max{f(xk+ 1

2
), f(xk−i), 0 ≤ i ≤ min(k, M − 1)}

7 while f(xk+ 1
2

+ νkdk) > fref + σνk(gk+ 1
2
)T dk:

8 νk = δνk

9 xk+1 = xk+ 1
2

+ νkdk

10 gk+1 = gk+ 1
2

+ νkAdk

11 pk+1 = gf
k+1

vector multiplication with two vectors achieves about 1.5 times the performance of two
matrix-vector multiplications with a single vector on a single thread. In parallel, and
especially with a large number of nodes, this speedup factor could be even higher. Our
preliminary tests in PETSc suggest that the factor can exceed 2.

A combination of the MPGP and SPG methods was proposed earlier in [87]. However,
the combination replaced the proportioning step with a variant of the SPG method. Since,
in our numerical experiments, the proportioning step is the least frequent step, we did
not consider any modifications to it. Analogous to our MPSPG algorithm, the MPGP
with SPG proportioning can both add and release the components of the active set in the
proportioning step.

5.2.3.4 Results

We use the BQP examples from the previous section and examples from the PERMON
library as our benchmarks. Specifically, the PERMON examples used are the 1D Poisson’s
contact problems ex1, ex2 (Section 3.3.2), and the journal bearing problem jbearing2
(Section 3.3.3).

For each benchmark and solver, unless otherwise specified, we set the relative tolerance
to rtol = 10−4. All other parameters are kept the same as in the previous sections.

The results for each tested variant and benchmark are presented in Table 5.4. We
compare only the number of Hessian multiplications performed by each algorithm. In the
MPSPGf algorithm with the fused matrix-vector multiplication, we count the matrix times
two vectors as a single Hessian multiplication and report the number of matrix-vector
multiplications not counted in brackets. We leave it to the reader to assess the cost factor
of the matrix multiplying two vectors for their specific setting and machine. The variant
with matrix-vector multiplication counted once will be referred to as fused-best, while the
variant with the cost of 1.5 of multiplying two vectors compared to multiplying a single
vector will be referred to as fused-realistic. The table also contains geometric means (GM)
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of the speedups compared to the standard MPRGP algorithm. The geometric means for
the fused algorithms are reported for the fused-best variant, and then in brackets for the
fused-realistic variant.

Problem Notes MPRGP MPPCG SPG MPSPG MPSPGf
BQP1 rtol: 10−4 1726 714 208 262 219 (217)
BQP2 rtol: 10−4 3174 799 205 273 266 (265)
BQP3 rtol: 10−4 3910 1268 248 401 234 (231)
BQP1 rtol: 10−6 2075 1175 579 745 592 (590)
BQP2 rtol: 10−6 4299 1230 522 744 726 (465)
BQP3 rtol: 10−6 6081 1735 604 1224 692 (688)
GM of BQP speedups 1 2.94 9.19 6.25 8.12 (5.54)
ex1 grid: 100 177 164 249 157 167 (165)
ex1 grid: 1000 3245 3037 2709 3946 2918 (2882)
ex1 grid: 5000 31657 25673 19806 74756 22541 (22232)
ex2 grid: 100 208 200 369 158 181 (178)
ex2 grid: 1000 2825 3366 3077 2993 2361 (2348)
ex2 grid: 5000 21525 16103 24505 20227 20767 (20543)
jbearing grid: 50x50 154 142 154 135 139 (129)
jbearing grid: 100x100 318 335 358 346 322 (307)
jbearing grid: 200x50 663 664 740 803 690 (659)
jbearing grid: 400x25 1463 1559 1597 1700 1443 (1383)
GM PERMON ex. speedups 1 1.05 0.92 0.91 1.10 (0.74)
Overall GM of speedups 1 1.54 2.19 1.87 2.32 (1.57)

Table 5.4: Comparison of the number of Hessian multiplications. The note grid refers to
the number of discretization points in 1D or 2D.

The results are divided into the BQP problems, which have high ratios of expansion
steps to the overall number of steps (between 59% and 99% with an average of 80%) in
the MPRGP method, and into PERMON examples, which have high ratios of CG steps
(between 84% and 94% with an average of 91%).

Therefore, the SPG method and the MPRGP variants with faster expansion schemes
perform exceptionally well on the BQP problems, achieving a geometric mean of speedups
between 2.9 and 9.2.

On the other hand, all methods, except the fused-realistic variant, have an overall
performance within 10% of the MPRGP method in the PERMON examples. Only the
projected CG variant and the fused-best variant have slightly higher performance than the
standard MPRGP.

Overall, due to the huge gains for the BQP problems, the SPG method and the new
variants perform better, with the geometric mean of speedups between 1.5 and 2.3.

While the SPG method achieved the second-highest overall speedup, it does not converge
to high precision. The new methods combining the MPRGP and SPG methods do not
suffer, at least on the tested BQP benchmarks, from this phenomenon. We report the
results on the BQP problems with the relative tolerance rtol = 10−12 in Table 5.5, where
the standalone SPG method does not converge.
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Problem MPRGP MPPCG MPSPG MPSPGf
BQP1 2750 1787 1422 1274 (1272)
BQP2 4951 1932 1402 1249 (1248)
BQP3 6797 2463 1923 1360 (1355)
GM of BQP speedups 1 2.22 2.89 3.50 (2.33)

Table 5.5: Comparison of the number of Hessian multiplications on the BQP problems
with the relative tolerance of 10−12.

The results are as expected when considering the convergence curves presented in
Section 5.2.3.2. Notably, the overall speedup of the new methods decreases as the ratio
of CG steps to the overall number of steps needed to achieve convergence increases.
Nevertheless, the presented expansion modifications maintain a large geometric mean of
speedups between 2.2 and 3.5.

5.3 Preconditioning MPRGP-Type Methods

As discussed in Section 4.2.3, preconditioning can significantly accelerate the CG method.
However, applying preconditioners to constrained QP problems is not straightforward. For
simplicity, let us consider only a lower bound-constrained QP

arg min
x

1
2xT Ax − xT b s.t. l ≤ x.

Let us consider an SPD preconditioner matrix M and the application of a preconditioner
with this matrix as M−1, as in Section 4.2.4. Using the split preconditioning to preserve
the symmetry of the Hessian, the cost function is transformed into

1
2
ˆ︁xT L−1AL−T ˆ︁x − ˆ︁xT L−1b,

where M = LLT and x = L−T ˆ︁x. Due to the variable change, the bound constraints are
transformed into general linear inequality constraints5

l ≤ L−T ˆ︁x.

QP problems with linear inequality constraints are typically much more difficult to solve.
We will show in the following subsections how to incorporate preconditioning that does

not change the type of the constraints into the MPRGP-type methods.

5.3.1 Preconditioning in Face

Preconditioning in face was introduced in [88] for the Polyak algorithm [89], and its use is
described for the MPRGP algorithm in [10].

5Unless L−T is diagonal, e.g., when using a diagonal scaling preconditioner.
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The idea is to apply the preconditioning only on the free set. In order to achieve this,
we split the preconditioner matrix according to the free set and the active set

M =
(︄

MFF MFA

MAF MAA

)︄
.

Then only the free gradient is preconditioned by a preconditioner computed solely on the
free set

z =
(︄

zf
F
o

)︄
= M−1

(︄
gf

F
o

)︄
=
(︄

M−1
FF o

o o

)︄(︄
gf

F
o

)︄
, (5.5)

where M−1 is the application of the preconditioning in face, while M−1
FF is an application

of some standard preconditioner like incomplete Cholesky. The preconditioning in face
gives a sort of preconditioned free gradient zf . Note that the vectors are usually not
reordered in actual implementations.

Obviously, the major drawback is that the preconditioner must be recomputed or
at least updated every time the free set changes. One way to avoid recomputing the
preconditioner is to restrict the preconditioner not to the current free set, but to the set
that will never be active. Then the preconditioner needs to be computed only once. For
example, if only a part of the solution vector is constrained, the preconditioner can be
computed and applied only to the unconstrained part. Such problems arise in, e.g., contact
problems. In the particular case of the 3D cuboid contact of Section 3.3.4 with n × n × n

unknowns, only n2 unknowns, i.e., at most 1/n of all unknowns, can become active. This
allows us to apply preconditioning to the remaining (n − 1) n2 unknowns. In the following
subsection, we develop an alternative preconditioning method that avoids the need to
recompute the preconditioner without prior knowledge of the set that will never be active.

5.3.2 Approximate Preconditioning in Face

To avoid the need to recompute the preconditioner, it is possible to apply the full precon-
ditioner, which is denoted M

−1, computed for the entire preconditioning matrix M , and
then zero out the active set components

z =
(︄˜︁zf

F
o

)︄
= M−1

(︄
gf

F
o

)︄
= gradientSplitF ree(M−1

(︄
gf

F
o

)︄
),

where the function gradientSplitF ree() zeros out the active set components of a given vector
in the same way as computing the free gradient in Equation (5.1). The operator M−1 is
again the application of the preconditioner, which we call the approximate preconditioning in
face because it tries to approximate the preconditioned free gradient zf from Equation (5.5).
The operator M

−1 is the application of some standard preconditioner, disregarding any
information about the free set.

Assuming M = A and the application of the preconditioner is the actual inverse, i.e.,
any matrix inverse notation for the rest of this subsection represents the inverse of the
matrix and not an application of some preconditioner, then the approximate preconditioner
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corresponds to the preconditioning by the Schur complement eliminating the active set
variables

gradientSplitF ree(M−1
(︄

gf
F
o

)︄
) =

(︄
(MFF − MFAM−1

AAMAF )−1gf
F

o

)︄
=
(︄

S−1gf
F

o

)︄
.

Moreover, by expanding the expression further, we obtain(︄
S−1gf

F
o

)︄
=
(︄

(M−1
FF + M−1

FFMFA(MAA − MAFM−1
FFMFA)−1MAFM−1

FF )gf
F

o

)︄

=
(︄

(I + M−1
FFMFA(MAA − MAFM−1

FFMFA)−1MAF )M−1
FFgf

F
o

)︄
.

Applying the preconditioner to the Hessian restricted to the free set instead of the free
gradient would result in

S−1AFF = I + M−1
FFMFA(MAA − MAFM−1

FFMFA)−1MAF .

Given r = rank(MAF ), the eigenvalues of the preconditioned operator S−1AFF are

1 = λ1 = · · · = λn−r ≤ · · · ≤ λn.

The eigenvalues of the preconditioning in face would be equal to ones. Therefore, the
difference between the two preconditioners is only in rank(MAF ) eigenvalues and the term

M−1
FFMFA(MAA − MAFM−1

FFMFA)−1MAF

can be thought of as the error of the approximate preconditioning in face compared to the
standard preconditioning in face.

To illustrate the previous result, we plotted in Figure 5.19 the eigenvalues for the
journal bearing problem (Section 3.3.3) in the first iteration with the zero initial guess.
The difference between the preconditioning in face and its approximate variant is precisely
in the last 50 eigenvalues, since rank(MAF ) = 50. We note that those last 50 eigenvalues
are spaced throughout the interval starting at 1 and ending with some maximal eigenvalue.

To see how the condition number and the rank of the off-diagonal matrix MAF change
throughout the iterative process, we plotted these quantities together with the free set
size for the 1D Poisson’s contact problem ex1 (Section 3.3.2) and for the journal bearing
problem in Figures 5.20 and 5.21. Apart from the first iteration for the ex1 problem,
the condition number of the preconditioned operator remained constant and was always
significantly lower than the condition number of the unpreconditioned operator. The
off-diagonal matrix rank was at most 4 for the 1D Poisson’s problem and grew moderately
from 25 to the maximum of 59 for the journal bearing problem, which represented only a
tiny fraction of the free set size where the preconditioning is applied.
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Figure 5.19: Eigenvalues of the journal bearing problem with 50x50 grid points (2,500
DOFs) preconditioned by the inverse matrix at iteration 0 (the free set size is 1,250, and
the rank of the off-diagonal block is 50).
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Figure 5.20: Condition number, free set size, and rank of the off-diagonal block for ex1
with 1,000 DOFs preconditioned by the inverse matrix.
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Figure 5.21: Condition number, free set size, and rank of the off-diagonal block for the
journal bearing problem with 400x25 grid points (10,000 DOFs) preconditioned by the
inverse matrix.

5.3.3 Preconditioned MPRGP and MPPCG Methods

The preconditioning is incorporated into the MPRGP-type methods in the same way as the
preconditioning for the steepest descent and CG methods is incorporated; see Section 4.2.4.
For completeness, the preconditioned MPRGP algorithm can be found in Algorithm 5.9.
The preconditioned MPPCG method is obtained by replacing the if…else block on lines
6–9 in Algorithm 5.9 with Algorithm 5.13.

Algorithm 5.9: Preconditioned MPRGP
Input: A, M−1, x0 ∈ Ω, b, Γ > 0, α ∈ (0, 2||A||−1]

1 g0 = Ax0 − b, z0 = M−1gf
0 , p0 = z0, k = 0

2 while ||gP
k || is not small:

3 if ||gc
k||2 ≤ Γ2||gf

k ||2:
4 αfeas

k = max{α | xk − αpk ∈ Ω}
5 αcg

k = gT
k zk/pT

k Apk

6 if αcg
k ≤ αfeas

k :
7 Preconditioned CG step - Algorithm 5.10
8 else:
9 Preconditioned expansion step - Algorithm 5.11;

10 else:
11 Preconditioned proportioning step - Algorithm 5.12;
12 k = k + 1

Output: xk
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Algorithm 5.10: Preconditioned CG step
1 xk+1 = xk − αcg

k pk

2 gk+1 = gk − αcg
k Apk

3 zk+1 = M−1gf
k+1

4 βk = pT
k Azk+1/pT

k Apk

5 pk+1 = zk+1 − βkpk

Algorithm 5.11: Preconditioned expansion step
1 xk+ 1

2
= xk − αfeas

k pk

2 gk+ 1
2

= gk − αfeas
k Apk

3 xk+1 = PΩ(xk+ 1
2

− αgf
k )

4 gk+1 = Axk+1 − b

5 zk+1 = M−1gf
k+1

6 pk+1 = zk+1

Algorithm 5.12: Preconditioned proportioning step
1 αsd

k = gT
k gc

k/(gc
k)T Agc

k

2 αfeas
k = max{α | xk − αgc

k ∈ Ω}
3 if αfeas

k < αsd
k :

4 αsd
k = αfeas

k

5 xk+1 = xk − αsd
k gc

k

6 gk+1 = gk − αsd
k Agc

k

7 zk+1 = M−1gf
k+1

8 pk+1 = zk+1

Algorithm 5.13: Preconditioned projected CG step
1 xk+1 = xk − αcg

k pk

2 if αcg
k ≤ αfeas:

3 gk+1 = gk − αcg
k Apk

4 zk+1 = M−1gf
k+1

5 βk = pT
k Azk+1/pT

k Apk

6 pk+1 = zk+1 − βkpk

7 else:
8 xk+1 = PΩ(xk+1)
9 gk+1 = Axk+1 − b

10 zk+1 = M−1gf
k+1

11 pk+1 = zk+1
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5.3.4 Results

The presented results were computed on a single core of the LUMI supercomputer (Sec-
tion 3.2.2). The stopping criterion was the relative tolerance of 10−10. As far as we know,
these are the only results of the MPRGP-type algorithm showcasing the preconditioning in
face (results for partially constrained problems using deflation can be found in [10, 90, 91]).

Standard preconditioners available in PETSc with the default options were used to
compute the results. The Cholesky preconditioner is the application of the direct solver,
i.e., preconditioning by the inverse of the Hessian, using MUMPS. ICC is the incomplete
Cholesky factorization [92], and SSOR is the symmetric successive over-relaxation [93].

The CG method, applied to the system of linear equations preconditioned by the inverse
of the Hessian, will converge in a single iteration. That is not the case for the preconditioned
MPRGP-type methods because the active set needs to be identified. However, if we start
with the correct active set or once the correct active set is identified, the preconditioned
method converges to machine precision in a single iteration. In any case, since the inverse
preconditioner is the optimal preconditioner for the preconditioning in face in the sense of
preconditioning the Hessian on the free set, the number of Hessian multiplications for the
Cholesky preconditioner is a very interesting metric6.

Due to the inclusion of the preconditioner in each iteration, the number of Hessian
multiplications, while still of interest, cannot be used as a metric for comparison between
the methods. Therefore, timings and speedups based on the timings are provided.

The results for a number of problem sizes are presented in Tables 5.6 and 5.7 and
Tables 5.8 to 5.11 for the 3D linear elasticity cube contact problem7 described in Section 3.3.4
and for the journal bearing problem described in Section 3.3.3, respectively. Columns Sb

and SM contain speedups. Sb is computed with respect to the same unpreconditioned
method, while SM is computed with respect to the unpreconditioned MPRGP method.

First, examining the performance of the standard MPRGP with the preconditioning
in face, the number of Hessian multiplications is significantly reduced compared to the
unpreconditioned method. This reduction is driven by a large decrease in the CG steps,
which is precisely what we would expect. The number of expansion steps appears to
be proportional to the preconditioner effectiveness, being the lowest for the Cholesky
preconditioner, followed by ICC, and finally SSOR. Compared to the unpreconditioned
method, the number of expansions was typically lower for the journal bearing problem
and higher for the elasticity problem. The number of proportioning steps follows similar
trends as the expansion steps, but the change between the preconditioners is much less
pronounced.

As for the new approximate preconditioning in face combined with the standard
MPRGP, the effectiveness in reducing the number of CG iterations is still there. However,
there is a further increase in the number of expansion steps, which is very noticeable in

6Although it cannot be taken as the lower bound on the number of Hessian multiplications needed by
the preconditioned MPRGP-type algorithm, despite this being the case in our numerical experiments.

7The contact condition is represented by upper bound constraints.



90 Projection-Based QP Algorithms Chapter 5

journal bearing problems. The cause of the increase could be driven by the decrease in
the effectiveness of the approximate preconditioning in face compared to the standard
preconditioning in face. Overall, the number of Hessian multiplications usually increases
compared to the standard preconditioning in face, especially for larger journal bearing
problems. Despite this, the time needed by the approximate preconditioning in face is
significantly lower than the preconditioning in face (except for the ICC preconditioner
in Table 5.11, where the preconditioning in face is slightly faster). The variants of the
preconditioners in face applying the ICC preconditioner exhibited a speedup between 1.96
and 4.66 for the preconditioning in face, and between 4.28 and 6.43 for the approximate
variant on the journal bearing problem. However, they were much slower on the elasticity
benchmark, where they attained a speedup of at most 0.15 and 0.86 for the preconditioning
in face and its approximate variant, respectively.

Despite the preconditioning working, i.e., the number of CG steps is reduced, the
growth in the number of expansion steps limits the usefulness of the preconditioning.
Fortunately, we developed algorithms in Section 5.2 that are specifically designed to reduce
the number of expansions. Therefore, we applied the preconditioning to the MPPCG
method described in Section 5.2.1. The results show that the MPPCG method significantly
limits the number of expansion steps, while the number of CG and proportioning steps
is in the same ballpark, if not nearly identical, compared to the MPRGP method. Even
the unpreconditioned MPPCG method exhibits some speedup over the unpreconditioned
MPRGP. The preconditioning in face always performs better than the approximate variant
in terms of the number of Hessian multiplications, but worse in terms of the time to
solution. The approximate preconditioning in face exhibits small speedups even for the
SSOR preconditioner, ranging from 1.14 to 1.94. Equipping the approximate preconditioner
with ICC leads to very large speedups between 2.70 and 10.38. If the unpreconditioned
MPRGP is taken as the base, then the speedups range between 5.13 and 13.46.
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Method Type Precond. Hess. CG Exp. Prop. Time [s] Sb SM

MPRGP None None 2030 1262 381 5 1.81 1.00 1.00
MPRGP Face Cholesky 788 5 389 4 227.16 0.01 0.01
MPRGP Approx Cholesky 817 28 392 4 9.51 0.19 0.19
MPRGP Face ICC 1154 95 526 6 20.65 0.09 0.09
MPRGP Approx ICC 1357 99 626 5 2.17 0.84 0.84
MPRGP Face SSOR 1617 178 717 4 15.94 0.11 0.11
MPRGP Approx SSOR 1642 191 723 4 2.31 0.78 0.78
MPPCG None None 1054 864 92 5 0.95 1.00 1.90
MPPCG Face Cholesky 12 5 1 4 6.24 0.15 0.29
MPPCG Approx Cholesky 35 28 1 4 1.22 0.78 1.48
MPPCG Face ICC 117 83 14 5 3.26 0.29 0.56
MPPCG Approx ICC 163 127 15 5 0.35 2.70 5.13
MPPCG Face SSOR 257 192 30 4 3.73 0.26 0.49
MPPCG Approx SSOR 285 202 39 4 0.49 1.94 3.68

Table 5.6: Results for preconditioning the 3D linear elasticity cube contact problem with
10x20x40 finite elements (28,413 DOFs).

Method Type Precond. Hess. CG Exp. Prop. Time [s] Sb SM

MPRGP None None 6544 3590 1472 9 88.51 1.00 1.00
MPRGP Face Cholesky 1818 6 903 5 14883.00 0.01 0.01
MPRGP Approx Cholesky 3095 44 1522 6 439.77 0.20 0.20
MPRGP Face ICC 4258 209 2020 8 594.58 0.15 0.15
MPRGP Approx ICC 5446 350 2544 7 102.93 0.86 0.86
MPRGP Face SSOR 5964 371 2793 6 487.90 0.18 0.18
MPRGP Approx SSOR 6040 405 2814 6 152.52 0.58 0.58
MPPCG None None 2766 2269 244 8 37.93 1.00 2.33
MPPCG Face Cholesky 14 6 1 5 212.37 0.18 0.42
MPPCG Approx Cholesky 57 43 3 7 30.19 1.26 2.93
MPPCG Face ICC 344 212 60 11 72.38 0.52 1.22
MPPCG Approx ICC 473 297 84 7 10.38 3.65 8.53
MPPCG Face SSOR 696 439 125 6 82.46 0.46 1.07
MPPCG Approx SSOR 715 443 132 7 22.55 1.68 3.93

Table 5.7: Results for preconditioning the 3D linear elasticity cube contact problem with
20x40x80 finite elements (209,223 DOFs).
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Method Type Precond. Hess. CG Exp. Prop. Time [s] Sb SM

MPRGP None None 2884 2660 69 85 0.33 1.00 1.00
MPRGP Face Cholesky 157 78 0 78 1.95 0.17 0.17
MPRGP Approx Cholesky 494 79 165 84 1.63 0.20 0.20
MPRGP Face ICC 179 100 0 78 0.17 1.96 1.96
MPRGP Approx ICC 308 79 72 84 0.05 6.43 6.43
MPRGP Face SSOR 999 732 93 80 0.77 0.43 0.43
MPRGP Approx SSOR 994 666 122 83 0.21 1.59 1.59
MPPCG None None 2348 2218 25 79 0.27 1.00 1.24
MPPCG Face Cholesky 157 78 0 78 1.95 0.14 0.17
MPPCG Approx Cholesky 197 97 10 79 0.91 0.29 0.36
MPPCG Face ICC 179 100 0 78 0.17 1.59 1.96
MPPCG Approx ICC 208 87 19 82 0.04 7.28 9.01
MPPCG Face SSOR 748 623 22 80 0.60 0.44 0.55
MPPCG Approx SSOR 858 699 38 82 0.19 1.42 1.76

Table 5.8: Results for preconditioning the journal bearing problem with 400x25 discretiza-
tion points (10,000 DOFs).

Method Type Precond. Hess. CG Exp. Prop. Time [s] Sb SM

MPRGP None None 7789 6989 306 187 3.30 1.00 1.00
MPRGP Face Cholesky 309 154 0 154 35.22 0.09 0.09
MPRGP Approx Cholesky 856 150 274 157 10.50 0.31 0.31
MPRGP Face ICC 366 189 11 154 1.29 2.56 2.56
MPRGP Approx ICC 1092 128 379 205 0.65 5.11 5.11
MPRGP Face SSOR 3168 1633 667 200 8.29 0.40 0.40
MPRGP Approx SSOR 4928 2344 1173 237 3.71 0.89 0.89
MPPCG None None 7286 6578 260 187 3.03 1.00 1.09
MPPCG Face Cholesky 309 154 0 154 35.16 0.09 0.09
MPPCG Approx Cholesky 421 196 33 158 7.09 0.43 0.47
MPPCG Face ICC 352 191 3 154 1.26 2.40 2.61
MPPCG Approx ICC 454 154 64 171 0.29 10.38 11.30
MPPCG Face SSOR 2066 1538 159 209 6.14 0.49 0.54
MPPCG Approx SSOR 2823 1970 308 236 2.25 1.35 1.47

Table 5.9: Results for preconditioning the journal bearing problem with 800x50 discretiza-
tion points (40,000 DOFs).
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Method Type Precond. Hess. CG Exp. Prop. Time [s] Sb SM

MPRGP None None 12022 9389 1199 234 9.95 1.00 1.00
MPRGP Face Cholesky 309 154 0 154 75.85 0.13 0.13
MPRGP Approx Cholesky 1839 148 765 160 39.96 0.25 0.25
MPRGP Face ICC 507 222 64 156 3.32 3.00 3.00
MPRGP Approx ICC 1920 140 772 235 2.16 4.60 4.60
MPRGP Face SSOR 4634 1971 1226 210 22.85 0.44 0.44
MPRGP Approx SSOR 7330 2667 2185 292 10.45 0.95 0.95
MPPCG None None 8906 7809 440 216 7.39 1.00 1.35
MPPCG Face Cholesky 309 154 0 154 75.86 0.10 0.13
MPPCG Approx Cholesky 459 208 46 158 15.35 0.48 0.65
MPPCG Face ICC 457 217 38 163 3.10 2.38 3.21
MPPCG Approx ICC 1042 169 274 324 1.17 6.29 8.47
MPPCG Face SSOR 2853 1913 357 225 16.24 0.46 0.61
MPPCG Approx SSOR 2996 1961 409 216 4.64 1.59 2.14

Table 5.10: Results for preconditioning the journal bearing problem with 800x100 dis-
cretization points (80,000 DOFs).

Method Type Precond. Hess. CG Exp. Prop. Time [s] Sb SM

MPRGP None None 37044 28703 3844 652 60.14 1.00 1.00
MPRGP Face Cholesky 617 308 0 308 317.32 0.19 0.19
MPRGP Approx Cholesky 3612 244 1525 317 156.26 0.38 0.38
MPRGP Face ICC 987 357 159 311 12.91 4.66 4.66
MPRGP Approx ICC 6225 250 2738 498 14.06 4.28 4.28
MPRGP Face SSOR 14072 5986 3780 525 144.25 0.42 0.42
MPRGP Approx SSOR 25871 8442 8281 866 73.02 0.82 0.82
MPPCG None None 25166 21632 1509 515 40.40 1.00 1.49
MPPCG Face Cholesky 617 308 0 308 317.43 0.13 0.19
MPPCG Approx Cholesky 887 379 93 321 59.38 0.68 1.01
MPPCG Face ICC 776 368 42 323 11.15 3.62 5.40
MPPCG Approx ICC 1976 238 564 609 4.47 9.04 13.46
MPPCG Face SSOR 9609 6194 1346 722 113.18 0.36 0.53
MPPCG Approx SSOR 11661 6902 1982 794 35.32 1.14 1.70

Table 5.11: Results for preconditioning the journal bearing problem with 1600x100 dis-
cretization points (160,000 DOFs).





Chapter 6

Quadratic Programming with
Linear Equality Constraints

This chapter presents several ways to solve QP problems with the feasible set given by a
linear equality

Ω = {x ∈ Rn | Bx = c} .

First, we present methods based on the KKT conditions that are capable of solving QP
problems with linear equality constraints exactly. Then we turn to iterative solvers that
allow some violations of the constraints. Among the iterative methods, we review the
penalty method and then improve upon its idea in augmented Lagrangian-type methods.
The augmented Lagrangian solver presented here will be used in the following section,
where we solve QP problems with linear inequality constraints.

6.1 Solution Methods Based on KKT Conditions

Assume, for simplicity, that the matrix B has full row rank, but not necessarily full column
rank1. Writing the Lagrangian of the linear equality-constrained problem

L(x, λ) = 1
2xT Ax − xT b + (Bx − c)T λ, (6.1)

the KKT conditions of Section 2.4.1 are

∇xL(x, λ) = Ax − b + BT λ = o (6.2)

∇λL(x, λ) = Bx − c = o.

These can be written compactly as the KKT saddle point system(︄
A BT

B O

)︄(︄
x

λ

)︄
=
(︄

b

c

)︄
1See [94] for when this is required.
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that can be solved iteratively by the MINRES Krylov subspace method or, if the system is
small, by a factorization method [94]. Alternatively, by eliminating the primal variable
from the KKT system, assuming A is positive definite, we obtain

BA−1BT λ = BA−1b − c,

which can be solved by the CG method or other methods2 of Chapter 4. This approach
is known as the range space method [10] and is used in the following Chapter 7 in the
derivation of the FETI method.

If we have available a particular solution ˆ︁x,

B ˆ︁x = c,

and a matrix Z with columns spanning the null space of B, then every feasible solution
can be described as

x = Zy + ˆ︁x. (6.3)

We substitute the above equation into the first KKT condition (6.2), obtaining

AZy + Aˆ︁x − b + BT λ = o.

Pre-multiplying by ZT , noting ZT BT = O, and reordering, we obtain

ZT AZy = ZT (b − Aˆ︁x) .

Solving for y (again by the methods of Chapter 4) and substituting back into Equation (6.3),
we obtain the primal solution. Notice that we only had to solve a system reduced to the
null space of B, which gives the approach its name, the null space method [94]. This
approach can be adapted by employing the projectors onto the null space of B instead of
using the null space basis Z directly, as shown in Section 7.1.2.

6.2 Penalty Method

A simple way to enforce the equality constraints is to enhance the cost function in such a
way that the violation of the constraints is penalized. In the quadratic penalty method, we
minimize the unconstrained penalized cost function

fρ(x) = f(x) + ρ

2 ||Bx − c||2,

where ρ ≥ 0 is the penalty parameter and ||Bx − c||2 is the penalty function [10]. If the
penalty parameter ρ were infinite, then the minimizer of the penalized cost function would
be the exact solution to the equality-constrained problem. In practice, a large enough
parameter is chosen so that the violation of the linear equality constraints

||Bx − c||
2An iterative method is typically preferable to avoid the need to assemble the Hessian BA−1BT .
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is small. If the violation of the constraints is not sufficiently small, then a larger value of
the penalty needs to be chosen, and the optimization must be repeated. However, this
leads to a balancing act, as large penalty values typically slow down the convergence of the
unconstrained solver.

6.3 Augmented Lagrangian Methods

Instead of estimating and possibly needing to update the penalty parameter, we can
explicitly include the Lagrange multipliers in our unconstrained minimization. We denote
the augmented Lagrangian function

L (x, λ, ρ) = L (x, λ) + ρ

2 ||Bx − c||2 = f(x) + λT (Bx − c) + ρ

2 ||Bx − c||2,

where we augmented the Lagrangian (6.1) with the quadratic penalty from the previous
section.

The iterative process of minimizing the augmented Lagrangian and updating the
estimate of the Lagrange multiplier

λk+1 = λk + ρ (Bxk − c)

is known as the method of multipliers [95] or a variant of the exact augmented Lagrangian
algorithm [10]. It can be shown that the Lagrange multipliers converge to the dual solution
[10], and thus xk converges to the primal solution (as we have a convex problem under
linear constraints qualification; see Section 2.4.1).

We can solve the unconstrained minimization of the augmented Lagrangian inexactly
by some iterative algorithm of Chapter 4. Therefore, we have an outer loop improving
the approximation of the Lagrange multipliers and an inner solver for the unconstrained
problem. Moreover, there is no need to solve the inner problem to high precision at the
beginning of the iterative process when the Lagrange multipliers are far from the solution.
Therefore, we link the precision of the inner solver to the violation of the linear equality
constraints. Increasing the value of the penalty ρ will speed up the outer loop but, similarly
to the penalty method, it can slow down the inner solver. Therefore, we update the penalty
only if sufficient progress has not been made by the method. It turns out that sufficient
progress can be linked to a sufficient increase in the value of the augmented Lagrangian. If
the inequality

L(xk+1, λk+1, ρk) < L(xk, λk, ρk−1) + ρk

2 ||Bxk+1 − c||2

holds, we say that the progress is not sufficient [10]. This variant is known as the
semimonotonic augmented Lagrangian (SMALE) method, or more specifically as SMALE-ρ,
which is summarized in Algorithm 6.1.

Instead of increasing the penalty value ρ to achieve a sufficient increase in the augmented
Lagrangian, we could solve the inner problem to higher precision by decreasing the value
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Algorithm 6.1: SMALE method
Initialize : x0, λ0, M0 > 0, ρ0 > 0, β > 1, η > 0, k = 0

1 while ||g(xk, λk, ρk)|| > ϵ||b|| ∨ ||Bxk − c|| > ϵ||b||:
2 λk+1 = λk + ρk (Bxk − c)
3 find xk+1 such that ||g(xk+1, λk+1, ρk)|| ≤ min(Mk||Bxk+1 − c||, η)
4 if L(xk+1, λk+1, ρk) < L(xk, λk, ρk−1) + ρk

2 ||Bxk+1 − c||2:
5 ρk+1 = βρk

6 else:
7 ρk+1 = ρk

8 Mk+1 = Mk

9 k = k + 1

of Mk, i.e., replacing line 5 in Algorithm 6.1 with

Mk+1 = Mk

β
.

This variant is known as SMALE-M and is used for the solution of QP problems with
linear equality constraints in this thesis.

The SMALE method is quite flexible in the sense that it takes care of the equality
constraints but does not affect other constraints, if present. For example, having the
feasible set include constraints such as the bound constraints, i.e.,

Ω = {x ∈ Rn | l ≤ x ∧ Bx = c} ,

we can swap the inner solver for one of the solvers of Chapter 5 that is capable of solving
bound-constrained problems, and we update the stopping criteria to those appropriate
for the new inner solver, i.e., replace gradients on lines 1 and 3 of Algorithm 6.1 with the
projected gradient. In this case, SMALE using MPRGP as the inner solver is also known
as SMALBE [10]. The SMALBE method is used in the next chapter to solve problems
with linear inequality constraints.



Chapter 7

Quadratic Programming with
Linear Inequality Constraints

QP problems with linear inequality constraints

Ω = {x ∈ Rn | Bx ≤ c}

can be quite challenging to solve. In our research, we prefer to solve these problems using
dualization. The drawback of dualizing linear inequality-constrained QP problems is that
a solve with the Hessian matrix features in the formulation. If this dual formulation is
plugged into an iterative solver, then there can be a large number of solves with the Hessian
matrix. In order to accelerate these solves, we prefer to use FETI-type (finite element
tearing and interconnecting) methods [96]. While originally the FETI method featured
dualization only as a means to the end of solving large-scale problems arising from the
finite element method [7], we prefer to consider FETI the other way around, i.e., as a
method to minimize the cost of the solves with the Hessian matrix in the dual formulation.
Furthermore, FETI methods can be used to naturally treat discontinuities, as described
for a slope stability problem in [97].

We will derive FETI in the following section and briefly note some of our improvements
to the method. The second section of this chapter presents several results using FETI or
standalone dualization.

The contributions of the author in this chapter are in improving the scalability and
energy efficiency of the FETI methods, and in applying QP methods to solve contact
problems using FETI or a standalone dualization. Most of the contributions are in software
implementation, QP solution strategies, and numerical experiments. The results are
supported by [4, 64, 65, 82, 96, 98–101] articles and [97, 102–107] conference proceedings.

7.1 Finite Element Tearing and Interconnecting

In this section, we will follow the descriptions of the Total FETI (TFETI) method as seen
in [8, 96, 108, 109]. For ease of cross-referencing, we temporarily adopt the notation used

99
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in these references. The solution vector x is u, the right-hand side b is f , the Hessian A is
denoted K, and Ω is the problem domain. Since the problems in the descriptions of FETI
originate from mechanics, e.g., linear elasticity problems, the Hessian K is often referred
to as the stiffness matrix, the right-hand side f is the load vector, and the solution vector
u is the displacement vector.

Broadly speaking, the FETI method decomposes (tears) the problem into a number of
subproblems assembled on non-overlapping subdomains (the unknowns are duplicated at
the interfaces). The subproblems can essentially be solved independently, but the continuity
of the solution across the subdomains (interconnecting) has to be enforced. Lagrange
multipliers are introduced to enforce the continuity of the solution. Dirichlet boundary
conditions can also be enforced by Lagrange multipliers, which make all of the subdomains
floating, i.e., the stiffness matrix of each subproblem has a non-empty null space. This
variant of the FETI method is known as Total FETI [8]. See Figure 7.1 for an illustration
of the TFETI domain decomposition.

Ω
Ω

1
Ω

2

Ω
3

Ω
4

λ

λ

λ

H

h

Figure 7.1: TFETI domain decomposition with outlined discretization.

Given a domain Ω decomposed into Ns non-overlapping subdomains Ωs, s ∈ {1, . . . , Ns},
let each subdomain have a stiffness matrix Ks, a prescribed nodal load vector fs, and
a displacement vector us. Furthermore, let the matrix BE have entries −1, 0, and
1, describing the subdomain interconnectivity. Specifically, for an unknown that was
duplicated on the interface, a row of BE contains −1 in the column index corresponding to
the unknown in one subdomain and +1 in the column index corresponding to the unknown
in the other subdomain. In the case of using BE to enforce a Dirichlet boundary condition,
an additional row containing a single 1 is added. Then the problem of finding the reaction
(displacement) vector u caused by the force f exerted on the domain Ω is

arg min
u

1
2uT Ku − fT u s.t.

BIu ≤ cI

BEu = cE

(7.1)

where

K =

⎛⎜⎜⎜⎝
K1

. . .
KNs

⎞⎟⎟⎟⎠ , f =

⎛⎜⎜⎜⎝
f1
...

fNs

⎞⎟⎟⎟⎠ , u =

⎛⎜⎜⎜⎝
u1
...

uNs

⎞⎟⎟⎟⎠ ,
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where the inequality constraints represent the non-penetration conditions for contact.

7.1.1 Dualization

Let us introduce the Lagrangian function associated with the problem (7.1)

L(u, λ) = 1
2uT Ku − uT f + (Bu − c)T λ,

where
B =

[︂
BT

E , BT
I

]︂T
, c =

[︂
cT

E , cT
I

]︂T
, λ =

[︂
λT

E , λT
I

]︂T
.

The dimension of the matrix B is Nd × Np, where Np is the primal dimension and Nd is
the number of Lagrange multipliers – dual dimension. We will assume that B is full row
rank, which can be achieved, e.g., by limiting that an unknown is present in at most one
inequality [109]. The KKT conditions are by Section 2.4.1

∇uL(u, λ) = Ku − f + BT λ = o, (7.2)

∇λE
L(u, λ) = BEu − cE = o, (7.3)

∇λI
L(u, λ) = BIu − cI ≤ o, (7.4)

λT
I (BIu − cI) = o, (7.5)

λI ≥ o. (7.6)

The first equation (7.2) is solvable if and only if

(f − BT λ) ∈ Im K ⇔ RT (f − BT λ) = o, (7.7)

where R ∈ RNp×Nk columns are the null space vectors of K, and Nk = Np − rank(K).
Multiplying the last equation by K and writing the zero right-hand side as KRα = o,
which is true for any α ∈ RNk , gives

Ku − f + BT λ = KRα.

Multiplying the last equation by a left generalized inverse K+, i.e., KK+K = K, and
rearranging yields the solution u

u = K+(f − BT λ) + Rα, (7.8)

with unknowns λ and α. The generalized inverse is typically realized by a direct solver,
which is MUMPS in our case, using either the fixing nodes [110] or projectors onto the
range of the stiffness matrix K [104]. We note that sparse graph reordering algorithms
can greatly improve the factorization of the stiffness matrix in terms of factorization speed,
solve time, and memory requirements, as we demonstrated in [102].

Substituting u into the second to fourth KKT conditions (7.3) to (7.5) yields

[∇λL(u, λ)]E =
[︂
−BK+BT λ + (BK+f − c) + BRα

]︂
E

= o, (7.9)

[∇λL(u, λ)]I =
[︂
−BK+BT λ + (BK+f − c) + BRα

]︂
I

≤ o, (7.10)

λT
I

[︂
−BK+BT λ + (BK+f − c) + BRα

]︂
I

= o, (7.11)

(7.12)
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and together with the fifth KKT condition λI ≥ o and with the solvability of the first
KKT condition RT (f − BT λ) = o (Eqs. (7.6) and (7.7)) represent the KKT conditions
for

arg max
λ

−1
2λT BK+BT λ+λT (BK+f −c)− 1

2fT K+f s.t.
λI ≥ o,

RT BT λ = RT f .
(7.13)

Denoting

F = BK+BT , G = RT BT ,

e = RT f , d = BK+f − c,

omitting the constant term and changing the sign in Equation (7.13), we obtain the dual
formulation

arg min
λ

1
2λT F λ − λT d s.t.

λI ≥ 0
Gλ = e.

(7.14)

Note that if the Hessian matrix of the primal problem K is nonsingular, e.g., if the
problem is not decomposed into subdomains and the Dirichlet boundary conditions are
incorporated into K, then the dual formulation is only bound-constrained with no equality
constraints.

7.1.2 Improving Dual Formulation

To improve the dual formulation, we first homogenize the equality constraints in the same
way as in Equation (2.2). Splitting λ into λIm ∈ Im GT and λKer ∈ Ker G so that

λ = λIm + λKer. (7.15)

The solution on the image of GT is the least squares solution

λIm = GT (GGT )−1e.

Since λIm is known, rewriting the dual formulation (7.14) in the unknown λKer yields the
homogenized dual formulation

arg min
λKer

1
2λT

KerF λKer − λT
Ker (d − F λIm) s.t.

[λKer]I ≥ − [λIm]I
GλKer = o.

(7.16)

In the FETI methods, to improve the convergence of iterative solvers applied to the
dual problem formulation, a projector onto the natural coarse space [111] is introduced.
This projector accelerates convergence by propagating information throughout the problem
globally.

The projector is onto the null space of G and is defined by

P = P T = I − GT (GGT )−1G = I − Q.
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Applying the projector symmetrically to the homogenized dual formulation (7.16) yields
the final dual formulation for the FETI method

arg min
λKer

1
2λT

KerP F P λKer − λT
KerP (d − F λIm) s.t.

[λKer]I ≥ − [λIm]I
GλKer = o.

We note that the projector would be sufficient on its own to enforce the equality constraints
if there were no bound constraints in the dual formulation, i.e., if there were no linear
inequality constraints in the primal formulation. If the linear inequality is not present,
the dual formulation is solved by the conjugate gradient method1. Otherwise, we use the
SMALE method of Section 6.3. The SMALE inner problem reads

arg min
λKer

1
2λT

Ker

(︂
P F P + ρGT G

)︂
λKer − λT

KerP (d − F λIm) s.t. [λKer]I ≥ − [λIm]I ,

(7.17)
which is solved by an MPRGP-type algorithm of Chapter 5.

If the matrix GGT is decomposed using Cholesky factorization

GGT = LLT ,

then scaling the equality constraints by L−1, we have

L−1GλKer = o,

and the term added by the quadratic penalty is

ρ

2∥L−1GλKer∥2 = ρ

2λT
KerG

T
(︂
L−1

)︂T
L−1GλKer

= ρ

2λT
KerG

T
(︂
GGT

)︂−1
GλKer = ρ

2λT
KerQλKer.

Then our final formulation of the SMALE inner problem can be written as

arg min
λKer

1
2λT

Ker (P F P + ρQ) λKer − λT
KerP (d − F λIm) s.t. [λKer]I ≥ − [λIm]I .

The approach is known as an implicit orthogonalization of the equality constraints [24].
The Hessian of this final formulation has a better spectrum than the Hessian of formulation
(7.17) [108], unless G has orthogonal rows, in which case the formulations are equivalent.
Indeed, the final Hessian eigenvalues are those of P F P , except for the zero eigenvalues,
which are shifted to ρ. This is due to the fact that P is the orthogonal projector onto
Ker G, and Q is the orthogonal projector onto Im GT . Formally, let P F P vKer = µKervKer,
then

(P F P + ρQ) vKer = µKervKer

and note that F is positive definite on Ker G [109], so that zero eigenvalues come from the
null space of the projector, which is Im GT . Moreover, for any vIm ∈ Im GT

(P F P + ρQ) vIm = ρvIm.

1Only one application of the project P is required in this case.
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Therefore, there are dim (Ker G) and dim
(︂
Im GT

)︂
nonzero eigenvalues, which are equal

to the nonzero eigenvalues of P F P and ρ, respectively.
After obtaining λ, we find α from the KKT conditions (7.9) to (7.11). By the KKT

condition (7.11), the KKT condition (7.10) is zero only if λI > 0. Denoting the active set

A = E ∪ {i | λi > 0} ,

we have from the KKT conditions (7.9) and (7.10)[︂
−BK+BT λ + (BK+f − c) + BRα

]︂
A

= o.

Substituting ˆ︁F = BAK+ (BA)T , ˆ︁d = BAK+f − cA, and ˆ︁G = RT (BA)T into the above
equation, we have

− ˆ︁F λA + ˆ︁d + ˆ︁GT α = o,

ˆ︁GT α = ˆ︁F λA − ˆ︁d /
(︂ ˆ︁G ˆ︁GT

)︂−1 ˆ︁G·

α =
(︂ ˆ︁G ˆ︁GT

)︂−1 ˆ︁G (︂ ˆ︁F λA − ˆ︁d)︂ .

With both λ and α known, the primal solution u is obtained from Equation (7.8).

7.1.3 FETI Condition Number and Preconditioning

Suppose that the domain Ω of a Poisson or elasticity problem (without the linear inequality
constraints) is a regularly discretized square or cube with the subdomain size H and
discretization parameter h (as in Figure 7.1). Then we have the following estimate of the
(T)FETI method condition number [8, 111]:

κ (P F | Im P ) ≤ C
H

h
. (7.18)

The FETI preconditioners, introduced in [111], can further improve convergence.
Splitting the indices of DOFs into internal i and boundary b (all DOFs that have

associated Lagrange multipliers) index sets, the stiffness matrix K can then be divided
into blocks

Ks =
[︄

Ks
ii Ks

ib

Ks
bi Ks

bb

]︄
.

Decomposing the matrix B into subdomain constraint matrices Bs so that B =
[︂
B1 · · · BNs

]︂
,

the subdomain constraint matrix Bs can be rewritten as

Bs =
[︂
O Bs

b

]︂
where Bs

b is formed by the columns corresponding to the interface DOFs, while the
remaining columns are all zero and correspond to the internal DOFs, as the constraint
matrix acts only on the interface.
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The theoretically optimal Dirichlet preconditioner reads

F −1
D =

Ns∑︂
s=1

Bs

[︄
O O

O Ss
bb

]︄
(Bs)T =

Ns∑︂
s=1

Bs
bSs

bb (Bs
b )T = BSBT ,

where Ss
bb is the Schur complement eliminating the block Ks

ii related to internal DOFs
with respect to the subdomain stiffness matrix Ks,

Ss
bb = Ks

bb − (Ks
ib)

T (Ks
ii)

−1 Ks
ib,

and

S = diag
(︄[︄

O O

O S1
bb

]︄
, . . . ,

[︄
O O

O SNS
bb

]︄)︄
.

A cheaper variant is the lumped preconditioner

F −1
L =

Ns∑︂
s=1

Bs

[︄
O O

O Ks
bb

]︄
(Bs)T =

Ns∑︂
s=1

Bs
bKs

bb (Bs
b )T = BKBT .

The lumped preconditioner is not numerically scalable; however, it is more economical
than the Dirichlet preconditioner.

Using F −1
D , the original condition number estimate (7.18), with some reasonable

restrictions on the constraint matrix B, improves as [112]

κ(P F −1
D P F | Im P ) ≤ C

(︃
1 + log H

h

)︃2
.

No such theoretical improvement has been proven with the lumped preconditioner F −1
L .

On the other hand, the lumped preconditioner is much cheaper to compute and potentially
apply than the Dirichlet preconditioner F −1

D .

7.1.4 FETI: Further Improvements and Beyond Finite Elements

7.1.4.1 FETI Coarse Problem

The solution of the coarse problem
(︂
GGT

)︂−1
involved in the projector P becomes a

bottleneck when the number of subdomains is large. For problems with linear inequality
constraints, or when using the preconditioners from the previous subsection, this bottleneck
is magnified, as these problems require two CP solutions in each iteration of the solver.

In [104], we have shown that the coarse space projectors can be avoided when using the
Moore-Penrose inverse instead of only the left generalized inverse as K+. Moreover, the
article demonstrates how to easily obtain the Moore-Penrose inverse from a left generalized
inverse. For problems with linear inequality constraints, one coarse problem still remains
when using an augmented Lagrangian method. However, this coarse problem can be solved
inexactly. The modification is known as the projector-avoiding FETI method.

Hybrid FETI methods [113] were introduced to further reduce the cost of the coarse
problem. They group subdomains into a number of clusters at the primal level. Since the
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size of the coarse problem in TFETI is equal to the number of subdomains times the defect
of any subdomain (e.g., six rigid body modes in 3D elasticity), connecting m × m × m

subdomains into clusters reduces the coarse problem size by a factor of m3 in 3D2. The
subdomains in clusters can be connected by edge averages [99, 103]. However, the hybrid
methods exhibit slightly worse convergence.

In any case, efficient strategies to solve the coarse problem are required [64]. The
deflated conjugate gradient method, together with these strategies, has been shown to be
very effective in solving this problem in Section 4.3.9.

7.1.4.2 Energy Efficiency

Energy efficiency is a hot topic in supercomputing. It turns out that the energy efficiency
of algorithms can be improved by dynamically changing the operating parameters of the
hardware depending on the part of the application being executed, e.g., stiffness matrix
factorization. The author’s own work on the topic was a contribution to energy measurement
software and methodology development, and experiments with the FETI method and BLAS
routines used in FETI, consisting of changing the processor core frequency, as detailed in
[101, 105–107].

7.1.4.3 Boundary Element Method

The FETI scheme can, in principle, be applied to any problem for which non-overlapping
subproblems can be constructed, and the continuity of the global solution can be enforced
by linear equality constraints. An easy extension is to use the boundary element method
instead of the finite element method. It was shown in [98] that the condition number
of a 2D model scalar problem is essentially better for the boundary element tearing and
interconnecting (BETI) method

κ (FETI)
κ (BETI) → 32

17 ≈ 1.88 as h → 0.

The drawback of the BETI method is that it is usually more expensive in the operator
assembly phase but can be less expensive in the solve phase.

7.2 Results

7.2.1 Solution of Large Scale Contact Problems of Mechanics

The Figures 7.2 and 7.3 illustrate the performance of the projector-avoiding TFETI method
on the 3D linear elasticity (Section 3.3.4) computed on Salomon (Section 3.2.4) with
the relative tolerance of 10−6. The SMALE-M parameters were η = 0.1, ρ = 1.1||A||,
M = 100||A||, and β = 10. The MPRGP parameters were Γ = 1 and α = 1.9||A||−1. The
scalability is demonstrated up to 15, 625 cores and 1.2 billion unknowns. The size of the

2In 2D, with clusters consisting of m × m subdomains, the reduction factor would be m2.
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subdomains is kept constant (303 elements for 73, 167 DOFs). We can observe some growth
in the number of Hessian multiplications and the time to solution because the size of the
contact interface increases. Overall, the projector-avoiding TFETI method exhibits better
scalability and achieves a speedup of 1.7 on the largest problem compared to the standard
TFETI method.
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Figure 7.2: Numerical scalability comparison of the TFETI method and its projector-
avoiding (P-less) variants on the 3D linear elasticity cube contact problem. The inexact
method solves the one remaining coarse problem inexactly with the CG method with the
relative tolerance of 10−2. One subdomain is assigned to one core [104].
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Figure 7.3: Scalability comparison of the TFETI method and its projector-avoiding (P-less)
variants on the 3D linear elasticity cube contact problem. The inexact method solves the
one remaining coarse problem inexactly with the CG method with the relative tolerance of
10−2. One subdomain is assigned to one core [104].

7.2.2 Preconditioned FETI for Elastoplasticity

In [100], we compared the FETI preconditioners on a 3D elastoplastic 4 × 2 × 1 mm
cuboid, similar to the linear elasticity cuboid problem of Section 3.3.4, but without contact.
The model parameters are the same as in Section 3.3.4 except for the Young’s modulus
E = 200 GPa and additional parameters σy = 450 MPa and Hm = 100 GPa, which are
the initial yield stress and the hardening modulus, respectively.

The problem consists of a solution for a single time step, with the nonlinear operator
linearized by a semismooth Newton method. See [100] for a complete problem and algorithm
description. In each Newton iteration, a linear elasticity problem is solved with FETI to
the relative tolerance of 10−6. The semismooth Newton method required 5 iterations to
satisfy the relative stopping criterion of 10−4.

Figures 7.4 and 7.5 illustrate the performance of the FETI preconditioners on 8×4×2 =
64 to 32 × 16 × 8 = 4096 subdomains, each discretized by 243 finite elements (46, 875 DOFs)
for a total of 830, 115 to 171, 421, 635 DOFs. The results were computed on MareNostrum 3,
which is described in Section 3.2.3.

The choice of the rectangular cuboid domain ensures that the subdomains are quite
badly conditioned. Therefore, the Dirichlet preconditioner works very well, achieving a
speedup compared to the unpreconditioned variant of about 3 and 2 in terms of the Hessian
multiplication and the time to solution, respectively. The time to solution may actually be
worse than the unpreconditioned FETI for well-conditioned subdomains. In any case, the
lumped preconditioner always achieved a small (at most 1.2) speedup in our tests. More
numerical experiments with differently conditioned subdomains can be found in [100].
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Figure 7.4: Comparison of the number of CG iterations for unpreconditioned TFETI and
TFETI equipped with the lumped or Dirichlet preconditioners on the 3D elastoplastic
cuboid problem [100].

Figure 7.5: Scalability comparison of unpreconditioned TFETI and TFETI equipped with
the lumped or Dirichlet preconditioners on the 3D elastoplastic cuboid problem. One
subdomain is assigned to one core [100].
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7.2.3 Solving Contact Problems without FETI

In [4], we presented a numerical method for the solution of hydro-mechanical problems
with fracture networks and contact conditions. The main benchmark of rock relaxation
during tunnel excavation in a fractured porous medium is briefly described in Section 3.3.5.
A robust iterative splitting was used to alternately solve the hydrological and mechanical
subproblems with the relative stopping tolerance of 10−4. The hydrological subproblem was
solved using the CG method with the BoomerAMG algebraic multigrid preconditioner. The
mechanical subproblem with contact on fractures was solved using PERMON, employing
dualization without using FETI and the MPRGP solver. The relative tolerance for the
hydrological and mechanical subproblems was 10−8 and 10−6, respectively. The MPRGP
parameters were Γ = 1 and α = 1.9||A||−1. The simulation was run using the Flow123d
software.

Performances of the solvers on a single node of the LUMI supercomputer (Section 3.2.2)
employing 64 cores are summarized in Table 7.1 and Figures 7.6 and 7.7. A key ingredient
for the performance of the scheme is warm starting the solvers with the last available
solution. In the case of the mechanical subproblem, this means warm starting the MPRGP
solver with the last dual solution. Overall, the warm starting reduced the number of
iterations needed by the solvers by more than a factor of 2.

Problem Primal Dual Hydr. iter. Mech. iter. Time [min]
306k (200) 213,945 18,632 2,108 365 6.4
502k (200) 322,953 19,591 2,587 544 10.3
1052k (200) 629,352 28,128 1,869 625 20.2
989k (400) 651,861 42,759 1,894 570 19.7

Table 7.1: Numerical scalability for each test case. The problem name consists of the
number of elements in thousands and the number of fractures in brackets. We report
the primal and dual dimensions of the mechanical subproblem, the number of hydraulic
subproblem iterations, the number of Hessian multiplications needed by the mechanical
subproblem solver, and the approximate runtime in minutes. In all cases, 71 time steps
were performed [4].
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Figure 7.6: Cumulative number of iterations for both solvers at each time step. Time step
iteration zero represents the steady-state initial solution, which took 148 iterations [4].
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Figure 7.7: The number of iterations for each coupling iteration in the first 5 time steps
(right) for the problem with one million elements and 200 fractures. Coupling iteration
zero represents the steady-state initial solution, which took 148 iterations [4].





Chapter 8

Conclusion

The thesis explores a number of improvements to selected QP algorithms. The improvements
are in terms of convergence, numerical scalability, time to solution, and general scalability
on large supercomputers.

Chapter 2 reviews basic facts and concepts in optimization, including the Karush-Kuhn-
Tucker conditions and duality.

Chapter 3 introduces the main software used throughout the thesis – the PERMON
library for quadratic programming, of which the author has been the main developer and
maintainer during his Ph.D. studies. Moreover, several benchmarks used in the thesis, as
well as the supercomputers employed to compute these benchmarks, are described.

Chapter 4 reviews the steepest descent method and the CG method for the solution
of unconstrained QP problems. Preconditioning of the CG method is discussed, with
particular focus on the deflation preconditioner. It is shown that the deflated CG method
is the fastest and most scalable method for the solution of the FETI coarse problem for
up to a medium number of coarse problem solves with a large number of cores. The time
needed for the coarse problem solution is more than halved compared to the standard
direct solver solution at 27, 000 cores with a better scalability slope.

Chapter 5 reviews MPRGP and SPG methods using projection onto the feasible set.
Then new modifications of MPRGP using the projected CG method (MPPCG) or the SPG
method (MPSPG) instead of a fixed step length projection for the active set expansion
are developed. These modifications exhibit a large geometric mean of speedups in terms
of the Hessian multiplications on suitable benchmarks of 2.9 for MPPCG and 6.25 for
MPSPG. Furthermore, preconditioning for MPRGP-type methods is discussed, and a new
approximate preconditioning in face is developed. This new preconditioner, combined
with MPPCG, achieves solution time speedups between 5.1 and 13.4 compared to the
unpreconditioned version and consistently outperforms the standard preconditioning in
face.

Chapter 6 describes solution methods for QP problems with linear equality constraints.
These include the solutions of saddle point formulations, the penalty method, and augmented
Lagrangian methods.
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Dualization is used in Chapter 7 to solve QP problems with linear inequality con-
straints. The FETI method is reviewed as a way to accelerate the solution. A number of
modifications to the FETI method (projector-avoiding FETI, hybrid FETI, and BETI) are
mentioned. The projector-avoiding FETI is shown to have superior scalability compared
to the standard FETI method, achieving a speedup of 1.7 on a simple 3D linear elasticity
contact problem with 1.2 billion unknowns. Additional results include preconditioned FETI
for 3D elastoplasticity and the solution of a 3D hydro-mechanical problem in a porous
medium with individually modeled fractures with contact conditions.

8.1 Own Results and Contributions by the Author

The main results of the author are:

• The maintenance and contribution to the development of the PERMON library
(Section 3.1.2). The maintenance work includes bug fixes and biannual major ver-
sion releases that keep the library in sync with the development of PETSc. The
contributions can be reviewed on the project’s GitHub [25]. A number of projects
listed in Section 3.1.2 can now utilize PERMON. Of course, while the author has
contributed the most to PERMON in recent years, these contributions are based on
the work of others, with special mention of Václav Hapla and David Horák for the
initial PERMON development, and the PETSc team for the PETSc library.

• PCDEFLATION (Section 4.3.8) is a multilevel deflation preconditioner that the
author contributed to PETSc. The deflation preconditioner is based on previous work
[50, 71]. It was developed while the author was on a research stay at the Institute of
Mathematics, TU Berlin, hosted by Prof. Reinhard Nabben.

• The modifications of the MPRGP expansion step (Section 5.2). The first modification
is the MPPCG algorithm [79], which uses a projected CG step for the expansion of
the active set. Additional analyses led to the introduction of several fallback schemes
that can do one or more of the following: improve convergence, guarantee convergence,
and recover the convergence bound. In [73], the author suggested that a combination
of MPRGP, which excels in cost function minimization once the correct active set is
identified, and SPG, which converges very quickly but to a limited satisfaction of the
KKT conditions, would be of interest. Such a combination of MPRGP using SPG
for the active set expansion (MPSPG) has been developed, as well as a potentially
improved variant with fused matrix-vector multiplications (MPSPGf). The MPPCG
method often exhibits much faster convergence and, at worst, is about equal to
the standard MPRGP. The MPSPG variants have even better convergence than
MPPCG on some problems but are slightly slower than the standard MPRGP on
other problems.
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• Approximate preconditioning in face for MPRGP-type methods (Section 5.3). A
modification of the preconditioning in face, requiring only one setup of the precon-
ditioner instead of each time the active set changes, has been developed. An error
analysis between the approximate and the standard preconditioner is included. The
standard preconditioning in face often does not work; while it improves convergence,
it is too expensive, resulting in a slowdown. In contrast, numerical experiments show
a significant speedup achieved by the new approximate preconditioning in face.

The author made a number of contributions related to the thesis topic that he con-
siders minor1. These typically consist of methodology, software, data creation, numerical
experiments, and writing part of the accompanying article. Only a few of these results
were shown in the thesis. The contributions can be broadly categorized into the following
groups:

• Improvements and applications of FETI-type methods that include projector-avoiding
FETI [104], scalable strategies for FETI coarse problem solutions [64, 65], hybrid
FETI/BETI methods [98, 99, 103], FETI preconditioners for elastoplasticity [100],
FETI for slope stability [97], node renumbering for FETI stiffness matrix factorization
[102], and energy efficiency of FETI and BLAS routines used in FETI implementations
[101, 105–107].

• Solution of QP problems that include contact problems in hydro-mechanics [4],
contact problems with friction in mechanics [82], and linear support vector machine
classifiers [43].

• Unconstrained QP and preconditioning, including Schwarz domain decomposition pre-
conditioners for Darcy flow [56], and inner product free methods and preconditioners
for 3 × 3 block matrices [57].

8.2 Future Work

Future work includes publishing the new results related to the MPPCG fallback, MPSPG
variants, and approximate preconditioning in face presented in this thesis.

As for future research, using the approximate preconditioning in face with the known
preconditioners for FETI methods could lead to an extremely fast solver for contact
problems in mechanics. Other topics include improvements to the SMALE algorithm and
the use of interior point methods for the solution of contact problems employing the FETI
method.

1Minor in the sense of the thesis author’s own contribution and not the result as a whole. In these
cases, the thesis author’s contribution to the resulting article is typically less than 30%.





Bibliography

[1] P. M. Pardalos and S. A. Vavasis, „Quadratic programming with one negative
eigenvalue is NP-hard“, Journal of Global Optimization, vol. 1, no. 1, pp. 15–22,
1991. doi: 10.1007/bf00120662.

[2] P. M. Pardalos and J. B. Rosen, „Methods for global concave minimization: A
bibliographic survey“, SIAM Review, vol. 28, no. 3, pp. 367–379, 1986. doi: 10.1137/
1028106.

[3] P. M. Pardalos and J. B. Rosen, Eds., Constrained Global Optimization: Algorithms
and Applications. Springer-Verlag, 1987. doi: 10.1007/bfb0000035.

[4] J. Stebel, J. Kružík, D. Horák, J. Březina and M. Béreš, „On the parallel solution
of hydro-mechanical problems with fracture networks and contact conditions“,
Computers & Structures, vol. 298, p. 107 339, 2024, issn: 0045-7949. doi: 10.1016/j.
compstruc.2024.107339.

[5] PERMON web page, http://permon.vsb.cz, 2016. (visited on 31/10/2023).

[6] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman,
E. M. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W. D.
Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley,
F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson,
J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang,
H. Zhang and J. Zhang, PETSc web page, https://petsc.org/, 2024. (visited on
24/07/2024).

[7] C. Farhat and F.-X. Roux, „A method of finite element tearing and interconnecting
and its parallel solution algorithm“, International Journal for Numerical Methods
in Engineering, vol. 32, no. 6, pp. 1205–1227, 1991, issn: 1097-0207. doi: 10.1002/
nme.1620320604.

[8] Z. Dostál, D. Horák and R. Kučera, „Total FETI – an easier implementable variant
of the FETI method for numerical solution of elliptic PDE“, Communications
in Numerical Methods in Engineering, vol. 22, no. 12, pp. 1155–1162, 2006. doi:
10.1002/cnm.881.

[9] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, Belmont, 1999, isbn:
978-1-886529-05-2.

117

https://doi.org/10.1007/bf00120662
https://doi.org/10.1137/1028106
https://doi.org/10.1137/1028106
https://doi.org/10.1007/bfb0000035
https://doi.org/10.1016/j.compstruc.2024.107339
https://doi.org/10.1016/j.compstruc.2024.107339
http://permon.vsb.cz
https://petsc.org/
https://doi.org/10.1002/nme.1620320604
https://doi.org/10.1002/nme.1620320604
https://doi.org/10.1002/cnm.881


118 Bibliography

[10] Z. Dostál, Optimal Quadratic Programming Algorithms, with Applications to Varia-
tional Inequalities. SOIA, Springer, New York, US, 2009, vol. 23, isbn: 0387848053.

[11] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, England: Cam-
bridge University Press, 2004.

[12] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970, isbn: 9781400873173.
doi: 10.1515/9781400873173.

[13] R. T. Rockafellar, „Lagrange multipliers and optimality“, SIAM Review, vol. 35,
no. 2, pp. 183–238, 1993, issn: 1095-7200. doi: 10.1137/1035044.

[14] A. Ben-Israel and T. N. E. Greville, Generalized Inverses (CMS Books in Mathe-
matics), en, 2nd ed. New York, NY: Springer, 2003. doi: 10.1007/b97366.

[15] M. Frank and P. Wolfe, „An algorithm for quadratic programming“, Naval Research
Logistics Quarterly, vol. 3, no. 1–2, pp. 95–110, 1956, issn: 1931-9193. doi: 10.1002/
nav.3800030109.

[16] J. E. Martínez-Legaz, D. Noll and W. Sosa, „Non-polyhedral extensions of the Frank
and Wolfe theorem“, in Splitting Algorithms, Modern Operator Theory, and Appli-
cations. Springer International Publishing, 2019, pp. 309–329, isbn: 9783030259396.
doi: 10.1007/978-3-030-25939-6_12.

[17] D. W. Peterson, „A review of constraint qualifications in finite-dimensional spaces“,
SIAM Review, vol. 15, no. 3, pp. 639–654, 1973, issn: 1095-7200. doi: 10.1137/
1015075.

[18] G. Strang, Computational Science and Engineering. Wellesley-Cambridge Press,
2007, isbn: 9780961408817.

[19] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L.
Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A.
May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith,
S. Zampini, H. Zhang and H. Zhang, „PETSc users manual“, Argonne National
Laboratory, Tech. Rep. ANL-95/11 - Revision 3.10, 2018.

[20] S. Balay, W. D. Gropp, L. C. McInnes and B. F. Smith, „Efficient management
of parallelism in object oriented numerical software libraries“, in Modern Software
Tools in Scientific Computing, E. Arge, A. M. Bruaset and H. P. Langtangen, Eds.,
Birkhäuser Press, 1997, pp. 163–202.

[21] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and J. Koster, „A fully asynchronous
multifrontal solver using distributed dynamic scheduling“, SIAM Journal on Matrix
Analysis and Applications, vol. 23, no. 1, pp. 15–41, 2001, issn: 1095-7162. doi:
10.1137/s0895479899358194.

https://doi.org/10.1515/9781400873173
https://doi.org/10.1137/1035044
https://doi.org/10.1007/b97366
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1007/978-3-030-25939-6_12
https://doi.org/10.1137/1015075
https://doi.org/10.1137/1015075
https://doi.org/10.1137/s0895479899358194


Bibliography 119

[22] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent and T. Mary, „Performance and scala-
bility of the block low-rank multifrontal factorization on multicore architectures“,
ACM Transactions on Mathematical Software, vol. 45, no. 1, pp. 1–26, 2019, issn:
1557-7295. doi: 10.1145/3242094.

[23] X. S. Li, „An overview of SuperLU: Algorithms, implementation, and user interface“,
ACM Transactions on Mathematical Software, vol. 31, no. 3, pp. 302–325, 2005,
issn: 1557-7295. doi: 10.1145/1089014.1089017.

[24] V. Hapla, „Massively parallel quadratic programming solvers with applications in
mechanics“, Available at http://hdl.handle.net/10084/112271, PhD thesis, VSB -
Technical University of Ostrava, 2016.

[25] PERMON project repository, https://github.com/permon. (visited on 24/07/2024).

[26] M. Pecha, „Solvers and their implementations for machine learning problems and
applications“, PhD thesis, VSB - Technical University of Ostrava, 2024.

[27] A. K. Turner, K. J. Peterson and D. Bolintineanu, „Geometric remapping of particle
distributions in the discrete element model for sea ice (DEMSI v0.0)“, Geoscientific
Model Development, vol. 15, no. 5, pp. 1953–1970, 2022, issn: 1991-9603. doi:
10.5194/gmd-15-1953-2022.

[28] Flow123d web page, http://flow123d.github.io. (visited on 31/10/2023).

[29] HyTeG repository, https://i10git.cs.fau.de/hyteg/hyteg. (visited on 31/10/2023).

[30] SIFEL web page, http://mech.fsv.cvut.cz/~sifel. (visited on 31/10/2023).

[31] ARCHER web page, http://archer.ac.uk. (visited on 31/10/2023).

[32] Top500 list web page, https : / / www . top500 . org / lists / top500/. (visited on
17/07/2024).

[33] LUMI web page, https://lumi-supercomputer.eu. (visited on 31/10/2023).

[34] MareNostrum 3 web page, https://www.bsc.es/marenostrum/marenostrum/mn3.
(visited on 31/10/2023).

[35] SLBQPgen code, https://github.com/diserafi/P2GP, 2018. (visited on 31/10/2023).

[36] D. di Serafino, G. Toraldo, M. Viola and J. Barlow, „A two-phase gradient method
for quadratic programming problems with a single linear constraint and bounds on
the variables“, SIAM Journal on Optimization, vol. 28, no. 4, pp. 2809–2838, 2018.
doi: 10.1137/17m1128538.

[37] BQP benchmarks, https : / / github . com / jkruzik / qp _ benchmarks. (visited on
24/07/2024).

[38] B. Averick, R. Carter, G.-L. Xue and J. More, „The MINPACK-2 test problem
collection“, Office of Scientific and Technical Information (OSTI), Tech. Rep., 1992.
doi: 10.2172/79972.

https://doi.org/10.1145/3242094
https://doi.org/10.1145/1089014.1089017
http://hdl.handle.net/10084/112271
https://github.com/permon
https://doi.org/10.5194/gmd-15-1953-2022
http://flow123d.github.io
https://i10git.cs.fau.de/hyteg/hyteg
http://mech.fsv.cvut.cz/~sifel
http://archer.ac.uk
https://www.top500.org/lists/top500/
https://lumi-supercomputer.eu
https://www.bsc.es/marenostrum/marenostrum/mn3
https://github.com/diserafi/P2GP
https://doi.org/10.1137/17m1128538
https://github.com/jkruzik/qp_benchmarks
https://doi.org/10.2172/79972


120 Bibliography

[39] G. Cimatti and O. Menchi, „On the numerical solution of a variational inequality
connected with the hydrodynamic lubrication of a complete journal bearing“, Calcolo,
vol. 15, no. 3, pp. 249–258, 1978, issn: 1126-5434. doi: 10.1007/bf02575916.

[40] J. Nečas and I. Hlaváček, Mathematical Theory of Elastic and Elasto-Plastic Bodies:
An Introduction (Studies in applied mechanics 3). Elsevier, 1981, isbn: 0444997547.

[41] J. Březina and J. Stebel, „Discrete fracture‐matrix model of poroelasticity“, ZAMM
- Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte
Mathematik und Mechanik, vol. 104, no. 4, 2024, issn: 1521-4001. doi: 10.1002/
zamm.202200469.

[42] C. Cortes and V. Vapnik, „Support-vector networks“, Machine Learning, vol. 20,
no. 3, pp. 273–297, 1995, issn: 0885-6125. doi: 10.1023/A:1022627411411.

[43] J. Kružík, M. Pecha, V. Hapla, D. Horák and M. Čermák, „Investigating convergence
of linear SVM implemented in PermonSVM employing MPRGP algorithm“, in High
Performance Computing in Science and Engineering, T. Kozubek, M. Čermák,
P. Tichý, R. Blaheta, J. Šístek, D. Lukáš and J. Jaroš, Eds., Cham: Springer
International Publishing, 2018, pp. 115–129, isbn: 978-3-319-97136-0. doi: 10.1007/
978-3-319-97136-0_9.

[44] Libsvm data: Classification (binary class), https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html. (visited on 31/10/2023).

[45] J. Dongarra and F. Sullivan, „Guest editors introduction to the top 10 algorithms“,
Computing in Science Engineering, vol. 2, no. 1, pp. 22–23, 2000, issn: 1521-9615.
doi: 10.1109/MCISE.2000.814652.

[46] J. Kružík, PCDEFLATION - deflation preconditioner in PETSc, https://petsc.org/
main/manualpages/PC/PCDEFLATION/, 2019. (visited on 31/10/2023).

[47] H. Akaike, „On a successive transformation of probability distribution and its
application to the analysis of the optimum gradient method“, Annals of the Institute
of Statistical Mathematics, vol. 11, no. 1, pp. 1–16, 1959, issn: 1572-9052. doi:
10.1007/bf01831719.

[48] Y. Huang, Y.-H. Dai, X.-W. Liu and H. Zhang, „On the asymptotic convergence
and acceleration of gradient methods“, Journal of Scientific Computing, vol. 90,
no. 1, 2021, issn: 1573-7691. doi: 10.1007/s10915-021-01685-8.

[49] J. BARZILAI and J. M. BORWEIN, „Two-point step size gradient methods“, IMA
Journal of Numerical Analysis, vol. 8, no. 1, pp. 141–148, 1988, issn: 1464-3642.
doi: 10.1093/imanum/8.1.141.

[50] J. Kružík, „Implementation of the deflated variants of the conjugate gradient
method“, Available at http://hdl.handle.net/10084/130303, Master’s thesis, VSB -
Technical University of Ostrava, 2018.

https://doi.org/10.1007/bf02575916
https://doi.org/10.1002/zamm.202200469
https://doi.org/10.1002/zamm.202200469
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1007/978-3-319-97136-0_9
https://doi.org/10.1007/978-3-319-97136-0_9
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://doi.org/10.1109/MCISE.2000.814652
https://petsc.org/main/manualpages/PC/PCDEFLATION/
https://petsc.org/main/manualpages/PC/PCDEFLATION/
https://doi.org/10.1007/bf01831719
https://doi.org/10.1007/s10915-021-01685-8
https://doi.org/10.1093/imanum/8.1.141
http://hdl.handle.net/10084/130303


Bibliography 121

[51] G. H. Golub and C. F. van Loan, Matrix Computations, 4th. JHU Press, 2013, isbn:
1421407949.

[52] A. van der Sluis and H. A. van der Vorst, „The rate of convergence of conjugate
gradients“, Numerische Mathematik, vol. 48, no. 5, pp. 543–560, 1986, issn: 0945-
3245. doi: 10.1007/BF01389450.

[53] A. Greenbaum, Iterative Methods for Solving Linear Systems. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 1997, isbn: 0-89871-396-X.

[54] A. Greenbaum, „Estimating the attainable accuracy of recursively computed residual
methods“, SIAM Journal on Matrix Analysis and Applications, vol. 18, no. 3, pp. 535–
551, 1997. doi: 10.1137/S0895479895284944.

[55] Y. Saad, Iterative Methods for Sparse Linear Systems, Second. Society for Industrial
and Applied Mathematics, 2003, isbn: 0898715342. doi: 10.1137/1.9780898718003.

[56] R. Blaheta, T. Luber and J. Kružík, „Schur complement-Schwarz DD preconditioners
for non-stationary Darcy flow problems“, in High Performance Computing in Science
and Engineering, T. Kozubek, M. Čermák, P. Tichý, R. Blaheta, J. Šístek, D. Lukáš
and J. Jaroš, Eds., Cham: Springer International Publishing, 2018, pp. 59–72, isbn:
9783319971360. doi: 10.1007/978-3-319-97136-0_5.

[57] O. Axelsson, Z.-Z. Liang, J. Kruzik and D. Horak, „Inner product free iterative
solution and elimination methods for linear systems of a three-by-three block matrix
form“, Journal of Computational and Applied Mathematics, vol. 383, p. 113 117,
2021, issn: 0377-0427. doi: 10.1016/j.cam.2020.113117.

[58] R. A. Nicolaides, „Deflation of conjugate gradients with applications to boundary
value problems“, SIAM Journal on Numerical Analysis, vol. 24, no. 2, pp. 355–365,
1987. doi: 10.1137/0724027.

[59] G. I. Marchuk and Y. A. Kuznetsov, „Theory and applications of the generalized
conjugate gradient method“, Advances in Mathematics. Supplementary Studies,
vol. 10, pp. 153–167, 1986.

[60] Z. Dostal, „Conjugate gradient method with preconditioning by projector“, Interna-
tional Journal of Computer Mathematics, vol. 23, no. 3-4, pp. 315–323, 1988. doi:
10.1080/00207168808803625.

[61] J. Erhel and F. Guyomarc’h, „An augmented conjugate gradient method for solving
consecutive symmetric positive definite linear systems“, SIAM Journal on Matrix
Analysis and Applications, vol. 21, no. 4, pp. 1279–1299, 2000.

[62] Y. Saad, M. Yeung, J. Erhel and F. Guyomarc’h, „A deflated version of the conjugate
gradient algorithm“, SIAM Journal on Scientific Computing, vol. 21, no. 5, pp. 1909–
1926, 2000. doi: 10.1137/S1064829598339761.

https://doi.org/10.1007/BF01389450
https://doi.org/10.1137/S0895479895284944
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1007/978-3-319-97136-0_5
https://doi.org/10.1016/j.cam.2020.113117
https://doi.org/10.1137/0724027
https://doi.org/10.1080/00207168808803625
https://doi.org/10.1137/S1064829598339761


122 Bibliography

[63] J. M. Tang, R. Nabben, C. Vuik and Y. A. Erlangga, „Comparison of two-level pre-
conditioners derived from deflation, domain decomposition and multigrid methods“,
Journal of scientific computing, vol. 39, no. 3, pp. 340–370, 2009.

[64] J. Kruzik, D. Horak, V. Hapla and M. Cermak, „Comparison of selected FETI coarse
space projector implementation strategies“, Parallel Computing, vol. 93, p. 102 608,
2020. doi: 10.1016/j.parco.2020.102608.

[65] A. Vašatová, J. Tomčala, R. Sojka, M. Pecha, J. Kružík, D. Horák, V. Hapla and M.
Čermák, „Parallel strategies for solving the FETI coarse problem in the PERMON
toolbox“, Programs and Algorithms of Numerical Mathematics, pp. 154–163, 2017.

[66] R. Nabben and C. Vuik, „A comparison of deflation and the balancing precon-
ditioner“, SIAM Journal on Scientific Computing, vol. 27, no. 5, pp. 1742–1759,
2006.

[67] K. Kahl and H. Rittich, „The deflated conjugate gradient method: Convergence,
perturbation and accuracy“, Linear Algebra and its Applications, vol. 515, pp. 111–
129, 2017, issn: 0024-3795. doi: 10.1016/j.laa.2016.10.027.

[68] V. Simoncini and D. B. Szyld, „Theory of inexact Krylov subspace methods and
applications to scientific computing“, SIAM Journal on Scientific Computing, vol. 25,
no. 2, pp. 454–477, 2003.

[69] J. Van Den Eshof and G. L. Sleijpen, „Inexact Krylov subspace methods for linear
systems“, SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 1, pp. 125–
153, 2004.

[70] L. García Ramos, R. Kehl and R. Nabben, „Projections, deflation, and multigrid
for nonsymmetric matrices“, SIAM Journal on Matrix Analysis and Applications,
vol. 41, no. 1, pp. 83–105, 2020, issn: 1095-7162. doi: 10.1137/18m1180268.

[71] J. Kruzik and D. Horak, „Wavelet based deflation of conjugate gradient method“,
in Proceedings of the Fifth International Conference on Parallel, Distributed, Grid
and Cloud Computing for Engineering, Civil-Comp Press, Stirlingshire, UK, 2017.
doi: 10.4203/ccp.111.9.

[72] J. E. Roman, C. Campos, E. Romero and A. Tomas, „SLEPc users manual“, D.
Sistemes Informàtics i Computació, Universitat Politècnica de València, Tech. Rep.
DSIC-II/24/02 - Revision 3.9, 2018.

[73] S. Crisci, J. Kružík, M. Pecha and D. Horák, „Comparison of active-set and gradient
projection-based algorithms for box-constrained quadratic programming“, Soft
Computing, vol. 24, no. 23, pp. 17 761–17 770, 2020. doi: 10.1007/s00500-020-05304-
w.

https://doi.org/10.1016/j.parco.2020.102608
https://doi.org/10.1016/j.laa.2016.10.027
https://doi.org/10.1137/18m1180268
https://doi.org/10.4203/ccp.111.9
https://doi.org/10.1007/s00500-020-05304-w
https://doi.org/10.1007/s00500-020-05304-w


Bibliography 123

[74] Z. Dostál and J. Schöberl, „Minimizing quadratic functions subject to bound
constraints with the rate of convergence and finite termination“, Computational
Optimization and Applications, vol. 30, no. 1, pp. 23–43, 2005. doi: 10.1007/s10589-
005-4557-7.

[75] J. Bouchala, Z. Dostál, T. Kozubek, L. Pospíšil and P. Vodstrčil, „On the solution
of convex QPQC problems with elliptic and other separable constraints with strong
curvature“, Applied Mathematics and Computation, vol. 247, pp. 848–864, 2014.
doi: 10.1016/j.amc.2014.09.044.

[76] L. Pospíšil, „Development of algorithms for solving minimizing problems with
convex quadratic function on special convex sets and applications“, Available at
http://hdl.handle.net/10084/110918, PhD thesis, VSB - Technical University of
Ostrava, 2015.

[77] H. A. van der Vorst and Q. Ye, „Residual replacement strategies for Krylov subspace
iterative methods for the convergence of true residuals“, SIAM Journal on Scientific
Computing, vol. 22, no. 3, pp. 835–852, 2000. doi: 10.1137/S1064827599353865.

[78] Z. Strakoš and P. Tichý, „On error estimation in the conjugate gradient method
and why it works in finite precision computations.“, ETNA. Electronic Transactions
on Numerical Analysis, vol. 13, pp. 56–80, 2002.

[79] J. Kružík, D. Horák, M. Čermák, L. Pospíšil and M. Pecha, „Active set expansion
strategies in MPRGP algorithm“, Advances in Engineering Software, vol. 149, 2020,
issn: 0965-9978. doi: 10.1016/j.advengsoft.2020.102895.

[80] E. G. Birgin, J. M. Martínez and M. Raydan, „Nonmonotone spectral projected
gradient methods on convex sets“, SIAM Journal on Optimization, vol. 10, no. 4,
pp. 1196–1211, 2000. doi: 10.1137/s1052623497330963.

[81] L. Grippo, F. Lampariello and S. Lucidi, „A nonmonotone line search technique for
newton’s method“, SIAM Journal on Numerical Analysis, vol. 23, no. 4, pp. 707–716,
1986. doi: 10.1137/0723046.

[82] L. Pospíšil, M. Čermák, D. Horák and J. Kružík, „Non-monotone projected gradient
method in linear elasticity contact problems with given friction“, Sustainability,
vol. 12, no. 20, p. 8674, 2020, issn: 2071-1050. doi: 10.3390/su12208674.

[83] S. Crisci, V. Ruggiero and L. Zanni, „Steplength selection in gradient projection
methods for box-constrained quadratic programs“, Applied Mathematics and Com-
putation, vol. 356, pp. 312–327, 2019. doi: 10.1016/j.amc.2019.03.039.

[84] S. Crisci, F. Porta, V. Ruggiero and L. Zanni, „Spectral properties of Barzilai–
Borwein rules in solving singly linearly constrained optimization problems subject to
lower and upper bounds“, SIAM Journal on Optimization, vol. 30, no. 2, pp. 1300–
1326, 2020, issn: 1095-7189. doi: 10.1137/19m1268641.

https://doi.org/10.1007/s10589-005-4557-7
https://doi.org/10.1007/s10589-005-4557-7
https://doi.org/10.1016/j.amc.2014.09.044
http://hdl.handle.net/10084/110918
https://doi.org/10.1137/S1064827599353865
https://doi.org/10.1016/j.advengsoft.2020.102895
https://doi.org/10.1137/s1052623497330963
https://doi.org/10.1137/0723046
https://doi.org/10.3390/su12208674
https://doi.org/10.1016/j.amc.2019.03.039
https://doi.org/10.1137/19m1268641


124 Bibliography

[85] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis and N. Koziris, „Under-
standing the performance of sparse matrix-vector multiplication“, in 16th Euromicro
Conference on Parallel, Distributed and Network-Based Processing (PDP 2008),
2008, pp. 283–292. doi: 10.1109/PDP.2008.41.

[86] R. Kannan, „Efficient sparse matrix multiple-vector multiplication using a bitmapped
format“, in 20th Annual International Conference on High Performance Computing,
2013, pp. 286–294. doi: 10.1109/HiPC.2013.6799135.

[87] L. Pospíšil, „An optimal algorithm with Barzilai–Borwein steplength and superrelax-
ation for QPQC problem“, in Programs and Algorithms of Numerical Mathematics,
J. Chleboun, K. Segeth, J. Šístek and T. Vejchodský, Eds., vol. Proceedings of
Seminar. Dolní Maxov, June 3-8, 2012, Prague: Institute of Mathematics AS CR,
2013, pp. 155–161.

[88] D. P. O’Leary, „A generalized conjugate gradient algorithm for solving a class of
quadratic programming problems“, Linear Algebra and its Applications, vol. 34,
pp. 371–399, 1980. doi: 10.1016/0024-3795(80)90173-1.

[89] B. Polyak, „The conjugate gradient method in extremal problems“, USSR Com-
putational Mathematics and Mathematical Physics, vol. 9, no. 4, pp. 94–112, 1969.
doi: 10.1016/0041-5553(69)90035-4.

[90] M. Domorádová and Z. Dostál, „Projector preconditioning for partially bound-
constrained quadratic optimization“, Numerical Linear Algebra with Applications,
vol. 14, no. 10, pp. 791–806, 2007. doi: 10.1002/nla.555.

[91] M. Jarošová, A. Klawonn and O. Rheinbach, „Projector preconditioning and trans-
formation of basis in FETI-DP algorithms for contact problems“, Mathematics and
Computers in Simulation, vol. 82, no. 10, pp. 1894–1907, 2012. doi: 10.1016/j.
matcom.2010.10.031.

[92] T. F. Chan and H. A. Van der Vorst, „Approximate and incomplete factorizations“,
in Parallel Numerical Algorithms, D. E. Keyes, A. Sameh and V. Venkatakrishnan,
Eds. Dordrecht: Springer Netherlands, 1997, pp. 167–202, isbn: 978-94-011-5412-3.
doi: 10.1007/978-94-011-5412-3_6.

[93] D. M. Young, Iterative Solution of Large Linear Systems. Academic Press, 1971,
isbn: 9780127730509.

[94] M. Benzi, G. H. Golub and J. Liesen, „Numerical solution of saddle point prob-
lems“, Acta Numerica, vol. 14, pp. 1–137, 2005, issn: 1474-0508. doi: 10.1017/
s0962492904000212.

[95] M. R. Hestenes, „Multiplier and gradient methods“, Journal of Optimization Theory
and Applications, vol. 4, no. 5, pp. 303–320, 1969, issn: 1573-2878. doi: 10.1007/
bf00927673.

https://doi.org/10.1109/PDP.2008.41
https://doi.org/10.1109/HiPC.2013.6799135
https://doi.org/10.1016/0024-3795(80)90173-1
https://doi.org/10.1016/0041-5553(69)90035-4
https://doi.org/10.1002/nla.555
https://doi.org/10.1016/j.matcom.2010.10.031
https://doi.org/10.1016/j.matcom.2010.10.031
https://doi.org/10.1007/978-94-011-5412-3_6
https://doi.org/10.1017/s0962492904000212
https://doi.org/10.1017/s0962492904000212
https://doi.org/10.1007/bf00927673
https://doi.org/10.1007/bf00927673


Bibliography 125

[96] D. Horak, V. Hapla, J. Kruzik, R. Sojka, M. Cermak, J. Tomcala, M. Pecha and
Z. Dostal, „A note on massively parallel implementation of FETI for the solution
of contact problems“, Advances in Electrical and Electronic Engineering, vol. 15,
no. 2, 2017, issn: 1336-1376. doi: 10.15598/aeee.v15i2.2321.

[97] D. Horák, J. Kružík, J. Kruis and T. Koudelka, „Slip condition in slope stability
analysis solved by FETI method“, in International Conference of Numerical Analysis
and Applied Mathematics ICNAAM 2021, AIP Publishing, 2023. doi: 10.1063/5.
0162232.

[98] P. Vodstrčil, D. Lukáš, Z. Dostál, M. Sadowská, D. Horák, O. Vlach, J. Bouchala and
J. Kružík, „On favorable bounds on the spectrum of discretized Steklov–Poincaré
operator and applications to domain decomposition methods in 2d“, Computers
& Mathematics with Applications, vol. 167, pp. 12–20, 2024, issn: 0898-1221. doi:
10.1016/j.camwa.2024.04.033.

[99] Z. Dostál, D. Horák, J. Kružík, T. Brzobohatý and O. Vlach, „Highly scalable
hybrid domain decomposition method for the solution of huge scalar variational
inequalities“, Numerical Algorithms, vol. 91, no. 2, pp. 773–801, 2022, issn: 1572-
9265. doi: 10.1007/s11075-022-01281-3.

[100] M. Čermák, V. Hapla, J. Kružík, A. Markopoulos and A. Vašatová, „Comparison
of different FETI preconditioners for elastoplasticity“, Computers & Mathematics
with Applications, vol. 74, no. 1, pp. 96–109, 2017, issn: 0898-1221. doi: 10.1016/j.
camwa.2017.01.003.

[101] J. Schuchart, M. Gerndt, P. G. Kjeldsberg, M. Lysaght, D. Horák, L. Říha, A.
Gocht, M. Sourouri, M. Kumaraswamy, A. Chowdhury, M. Jahre, K. Diethelm,
O. Bouizi, U. S. Mian, J. Kružík, R. Sojka, M. Beseda, V. Kannan, Z. Bendifallah,
D. Hackenberg and W. E. Nagel, „The READEX formalism for automatic tuning
for energy efficiency“, Computing, vol. 99, no. 8, pp. 727–745, 2017, issn: 1436-5057.
doi: 10.1007/s00607-016-0532-7.

[102] D. Hrbáč, J. Kružík, D. Horák and J. Kruis, „Node renumbering strategies for
efficient direct methods in selected problems of soil mechanics“, in International
Conference of Numerical Analysis and Applied Mathematics ICNAAM 2021, AIP
Publishing, 2023. doi: 10.1063/5.0163768.

[103] Z. Dostál, T. Brzobohatý, D. Horák, J. Kružík and O. Vlach, „Scalable hybrid TFETI-
DP methods for large boundary variational inequalities“, in Domain Decomposition
Methods in Science and Engineering XXVI, S. C. Brenner, E. Chung, A. Klawonn,
F. Kwok, J. Xu and J. Zou, Eds., Cham: Springer International Publishing, 2022,
pp. 29–40, isbn: 978-3-030-95025-5. doi: 10.1007/978-3-030-95025-5_3.

https://doi.org/10.15598/aeee.v15i2.2321
https://doi.org/10.1063/5.0162232
https://doi.org/10.1063/5.0162232
https://doi.org/10.1016/j.camwa.2024.04.033
https://doi.org/10.1007/s11075-022-01281-3
https://doi.org/10.1016/j.camwa.2017.01.003
https://doi.org/10.1016/j.camwa.2017.01.003
https://doi.org/10.1007/s00607-016-0532-7
https://doi.org/10.1063/5.0163768
https://doi.org/10.1007/978-3-030-95025-5_3


126 Bibliography

[104] D. Horak, Z. Dostal, V. Hapla, J. Kruzik, R. Sojka and M. Cermak, „Projector-
less TFETI for contact problems: Preliminary results“, in Proceedings of the Fifth
International Conference on Parallel, Distributed, Grid and Cloud Computing for
Engineering, ser. PARENG 2017, Civil-Comp Press. doi: 10.4203/ccp.111.8.

[105] D. Horak, L. Riha, R. Sojka, J. Kruzik, M. Beseda, M. Cermak and J. Schuchart,
„Energy consumption optimization of the total-FETI solver by changing the cpu
frequency“, in AIP Conference Proceedings, AIP Publishing, 2017. doi: 10.1063/1.
4992511.

[106] R. Sojka, L. Riha, D. Horak, J. Kruzik, M. Beseda and M. Cermak, „The energy
consumption optimization of the BLAS routines“, in AIP Conference Proceedings,
AIP Publishing, 2017. doi: 10.1063/1.4992522.

[107] D. Horak, L. Riha, R. Sojka, J. Kruzik and M. Beseda, „Energy consumption
optimization of the Total-FETI solver and BLAS routines by changing the cpu
frequency“, in 2016 International Conference on High Performance Computing &
Simulation (HPCS), IEEE, 2016. doi: 10.1109/hpcsim.2016.7568453.

[108] Z. Dostál, F. A. Gomes Neto and S. A. Santos, „Solution of contact problems by
FETI domain decomposition with natural coarse space projections“, Computer
Methods in Applied Mechanics and Engineering, vol. 190, no. 13–14, pp. 1611–1627,
2000, issn: 0045-7825. doi: 10.1016/s0045-7825(00)00180-8.

[109] Z. Dostál, T. Kozubek, M. Sadowská and V. Vondrák, Scalable Algorithms for
Contact Problems. Springer New York, 2016, isbn: 9781493968343. doi: 10.1007/978-
1-4939-6834-3.

[110] Z. Dostál, T. Kozubek, A. Markopoulos and M. Menšík, „Cholesky decomposition
of a positive semidefinite matrix with known kernel“, Applied Mathematics and
Computation, vol. 217, no. 13, pp. 6067–6077, 2011, issn: 0096-3003. doi: 10.1016/j.
amc.2010.12.069.

[111] C. Farhat, J. Mandel and F. X. Roux, „Optimal convergence properties of the FETI
domain decomposition method“, Computer Methods in Applied Mechanics and
Engineering, vol. 115, no. 3–4, pp. 365–385, 1994, issn: 0045-7825. doi: 10.1016/0045-
7825(94)90068-x.

[112] J. Mandel and R. Tezaur, „Convergence of a substructuring method with Lagrange
multipliers“, Numerische Mathematik, vol. 73, no. 4, pp. 473–487, 1996, issn: 0945-
3245. doi: 10.1007/s002110050201.

[113] A. Klawonn and O. Rheinbach, „A hybrid approach to 3‐level FETI“, PAMM, vol. 8,
no. 1, pp. 10 841–10 843, 2008, issn: 1617-7061. doi: 10.1002/pamm.200810841.

https://doi.org/10.4203/ccp.111.8
https://doi.org/10.1063/1.4992511
https://doi.org/10.1063/1.4992511
https://doi.org/10.1063/1.4992522
https://doi.org/10.1109/hpcsim.2016.7568453
https://doi.org/10.1016/s0045-7825(00)00180-8
https://doi.org/10.1007/978-1-4939-6834-3
https://doi.org/10.1007/978-1-4939-6834-3
https://doi.org/10.1016/j.amc.2010.12.069
https://doi.org/10.1016/j.amc.2010.12.069
https://doi.org/10.1016/0045-7825(94)90068-x
https://doi.org/10.1016/0045-7825(94)90068-x
https://doi.org/10.1007/s002110050201
https://doi.org/10.1002/pamm.200810841


Appendix A

List of Author’s Publications
The following is a list of the author’s publications indexed in Web of Science or Scopus.

Articles Related to the Thesis

[4] J. Stebel, J. Kružík, D. Horák, J. Březina and M. Béreš, „On the parallel solution
of hydro-mechanical problems with fracture networks and contact conditions“,
Computers & Structures, vol. 298, p. 107 339, 2024, issn: 0045-7949. doi: 10.1016/j.
compstruc.2024.107339.

[57] O. Axelsson, Z.-Z. Liang, J. Kruzik and D. Horak, „Inner product free iterative
solution and elimination methods for linear systems of a three-by-three block matrix
form“, Journal of Computational and Applied Mathematics, vol. 383, p. 113 117,
2021, issn: 0377-0427. doi: 10.1016/j.cam.2020.113117.

[64] J. Kruzik, D. Horak, V. Hapla and M. Cermak, „Comparison of selected FETI
coarse space projector implementation strategies“, Parallel Computing, vol. 93,
p. 102 608, 2020. doi: 10.1016/j.parco.2020.102608.

[65] A. Vašatová, J. Tomčala, R. Sojka, M. Pecha, J. Kružík, D. Horák, V. Hapla and M.
Čermák, „Parallel strategies for solving the FETI coarse problem in the PERMON
toolbox“, Programs and Algorithms of Numerical Mathematics, pp. 154–163, 2017.

[73] S. Crisci, J. Kružík, M. Pecha and D. Horák, „Comparison of active-set and
gradient projection-based algorithms for box-constrained quadratic programming“,
Soft Computing, vol. 24, no. 23, pp. 17 761–17 770, 2020. doi: 10.1007/s00500-020-
05304-w.

[79] J. Kružík, D. Horák, M. Čermák, L. Pospíšil and M. Pecha, „Active set expansion
strategies in MPRGP algorithm“, Advances in Engineering Software, vol. 149, 2020,
issn: 0965-9978. doi: 10.1016/j.advengsoft.2020.102895.

[82] L. Pospíšil, M. Čermák, D. Horák and J. Kružík, „Non-monotone projected gradient
method in linear elasticity contact problems with given friction“, Sustainability,
vol. 12, no. 20, p. 8674, 2020, issn: 2071-1050. doi: 10.3390/su12208674.

127

https://doi.org/10.1016/j.compstruc.2024.107339
https://doi.org/10.1016/j.compstruc.2024.107339
https://doi.org/10.1016/j.cam.2020.113117
https://doi.org/10.1016/j.parco.2020.102608
https://doi.org/10.1007/s00500-020-05304-w
https://doi.org/10.1007/s00500-020-05304-w
https://doi.org/10.1016/j.advengsoft.2020.102895
https://doi.org/10.3390/su12208674


128 List of Author’s Publications Appendix A

[96] D. Horak, V. Hapla, J. Kruzik, R. Sojka, M. Cermak, J. Tomcala, M. Pecha and
Z. Dostal, „A note on massively parallel implementation of FETI for the solution
of contact problems“, Advances in Electrical and Electronic Engineering, vol. 15,
no. 2, 2017, issn: 1336-1376. doi: 10.15598/aeee.v15i2.2321.

[98] P. Vodstrčil, D. Lukáš, Z. Dostál, M. Sadowská, D. Horák, O. Vlach, J. Bouchala and
J. Kružík, „On favorable bounds on the spectrum of discretized Steklov–Poincaré
operator and applications to domain decomposition methods in 2d“, Computers
& Mathematics with Applications, vol. 167, pp. 12–20, 2024, issn: 0898-1221. doi:
10.1016/j.camwa.2024.04.033.

[99] Z. Dostál, D. Horák, J. Kružík, T. Brzobohatý and O. Vlach, „Highly scalable
hybrid domain decomposition method for the solution of huge scalar variational
inequalities“, Numerical Algorithms, vol. 91, no. 2, pp. 773–801, 2022, issn: 1572-
9265. doi: 10.1007/s11075-022-01281-3.

[100] M. Čermák, V. Hapla, J. Kružík, A. Markopoulos and A. Vašatová, „Comparison
of different FETI preconditioners for elastoplasticity“, Computers & Mathematics
with Applications, vol. 74, no. 1, pp. 96–109, 2017, issn: 0898-1221. doi: 10.1016/j.
camwa.2017.01.003.

[101] J. Schuchart, M. Gerndt, P. G. Kjeldsberg, M. Lysaght, D. Horák, L. Říha, A.
Gocht, M. Sourouri, M. Kumaraswamy, A. Chowdhury, M. Jahre, K. Diethelm,
O. Bouizi, U. S. Mian, J. Kružík, R. Sojka, M. Beseda, V. Kannan, Z. Bendifallah,
D. Hackenberg and W. E. Nagel, „The READEX formalism for automatic tuning
for energy efficiency“, Computing, vol. 99, no. 8, pp. 727–745, 2017, issn: 1436-5057.
doi: 10.1007/s00607-016-0532-7.

Conference Proceedings Related to the Thesis

[43] J. Kružík, M. Pecha, V. Hapla, D. Horák and M. Čermák, „Investigating conver-
gence of linear SVM implemented in PermonSVM employing MPRGP algorithm“,
in High Performance Computing in Science and Engineering, T. Kozubek, M.
Čermák, P. Tichý, R. Blaheta, J. Šístek, D. Lukáš and J. Jaroš, Eds., Cham:
Springer International Publishing, 2018, pp. 115–129, isbn: 978-3-319-97136-0. doi:
10.1007/978-3-319-97136-0_9.

[56] R. Blaheta, T. Luber and J. Kružík, „Schur complement-Schwarz DD precondition-
ers for non-stationary Darcy flow problems“, in High Performance Computing in
Science and Engineering, T. Kozubek, M. Čermák, P. Tichý, R. Blaheta, J. Šístek, D.
Lukáš and J. Jaroš, Eds., Cham: Springer International Publishing, 2018, pp. 59–72,
isbn: 9783319971360. doi: 10.1007/978-3-319-97136-0_5.

https://doi.org/10.15598/aeee.v15i2.2321
https://doi.org/10.1016/j.camwa.2024.04.033
https://doi.org/10.1007/s11075-022-01281-3
https://doi.org/10.1016/j.camwa.2017.01.003
https://doi.org/10.1016/j.camwa.2017.01.003
https://doi.org/10.1007/s00607-016-0532-7
https://doi.org/10.1007/978-3-319-97136-0_9
https://doi.org/10.1007/978-3-319-97136-0_5


Appendix A List of Author’s Publications 129

[71] J. Kruzik and D. Horak, „Wavelet based deflation of conjugate gradient method“,
in Proceedings of the Fifth International Conference on Parallel, Distributed, Grid
and Cloud Computing for Engineering, Civil-Comp Press, Stirlingshire, UK, 2017.
doi: 10.4203/ccp.111.9.

[97] D. Horák, J. Kružík, J. Kruis and T. Koudelka, „Slip condition in slope stability
analysis solved by FETI method“, in International Conference of Numerical Analysis
and Applied Mathematics ICNAAM 2021, AIP Publishing, 2023. doi: 10.1063/5.
0162232.

[102] D. Hrbáč, J. Kružík, D. Horák and J. Kruis, „Node renumbering strategies for
efficient direct methods in selected problems of soil mechanics“, in International
Conference of Numerical Analysis and Applied Mathematics ICNAAM 2021, AIP
Publishing, 2023. doi: 10.1063/5.0163768.

[103] Z. Dostál, T. Brzobohatý, D. Horák, J. Kružík and O. Vlach, „Scalable hybrid
TFETI-DP methods for large boundary variational inequalities“, in Domain Decom-
position Methods in Science and Engineering XXVI, S. C. Brenner, E. Chung, A.
Klawonn, F. Kwok, J. Xu and J. Zou, Eds., Cham: Springer International Publishing,
2022, pp. 29–40, isbn: 978-3-030-95025-5. doi: 10.1007/978-3-030-95025-5_3.

[104] D. Horak, Z. Dostal, V. Hapla, J. Kruzik, R. Sojka and M. Cermak, „Projector-
less TFETI for contact problems: Preliminary results“, in Proceedings of the Fifth
International Conference on Parallel, Distributed, Grid and Cloud Computing for
Engineering, ser. PARENG 2017, Civil-Comp Press. doi: 10.4203/ccp.111.8.

[105] D. Horak, L. Riha, R. Sojka, J. Kruzik, M. Beseda, M. Cermak and J. Schuchart,
„Energy consumption optimization of the total-FETI solver by changing the cpu
frequency“, in AIP Conference Proceedings, AIP Publishing, 2017. doi: 10.1063/1.
4992511.

[106] R. Sojka, L. Riha, D. Horak, J. Kruzik, M. Beseda and M. Cermak, „The energy
consumption optimization of the BLAS routines“, in AIP Conference Proceedings,
AIP Publishing, 2017. doi: 10.1063/1.4992522.

[107] D. Horak, L. Riha, R. Sojka, J. Kruzik and M. Beseda, „Energy consumption
optimization of the Total-FETI solver and BLAS routines by changing the cpu
frequency“, in 2016 International Conference on High Performance Computing &
Simulation (HPCS), IEEE, 2016. doi: 10.1109/hpcsim.2016.7568453.

Publications Unrelated to the Thesis

[114] J. Papuga, R. Halama, M. Fusek, J. Rojíček, F. Fojtík, D. Horák, M. Pecha,
J. Tomčala, M. Čermák, V. Hapla, R. Sojka and J. Kružík, „Efficient lifetime
estimation techniques for general multiaxial loading“, in AIP Conference Proceedings,
AIP Publishing, 2017. doi: 10.1063/1.4992518.

https://doi.org/10.4203/ccp.111.9
https://doi.org/10.1063/5.0162232
https://doi.org/10.1063/5.0162232
https://doi.org/10.1063/5.0163768
https://doi.org/10.1007/978-3-030-95025-5_3
https://doi.org/10.4203/ccp.111.8
https://doi.org/10.1063/1.4992511
https://doi.org/10.1063/1.4992511
https://doi.org/10.1063/1.4992522
https://doi.org/10.1109/hpcsim.2016.7568453
https://doi.org/10.1063/1.4992518




Appendix B

List of Projects
The following is a list of projects in which the author of this thesis participated.

• REFRESH - Research Excellence For REgion Sustainability and High-tech Industries
Grant No. CZ.10.03.01/00/22_003/0000048 (Ministry of the Environment of the Czech
Republic)

• International mobility of researchers of IGN II
Grant No. CZ.02.2.69/0.0/0.0/18_053/0016978 (Ministry of Education, Youth and
Sport of the Czech Republic)

• Development of iterative algorithms for solving contact problems emerging in the analysis
of steel structures bolt connections
Grant No. GA22-13220S (Czech Science Foundation (GACR))

• HPC-EUROPA3
Grant No. INFRAIA-2016-1-730897 (EU Horizon 2020 Research and Innovation Pro-
gramme)

• Efficient and reliable computational techniques for limit analysis and incremental
methods in geotechnical stability
Grant No. GA19-11441S (Czech Science Foundation (GACR))

• Prediction of EDZ properties with impact on safety and reliability of deep radioactive
waste repository (ENDORSE)
Grant No. TK02010118 (Technology Agency of the Czech Republic)

• European Joint Programme on Radioactive Waste Management (EURAD)
Grant No. 847593 (EU Horizon 2020 Research and Innovation Programme)
Grant No. SO2020-017 (Czech Radioactive Waste Repository Authority (SÚRAO))

• Support for Science and Research in the Moravia–Silesia Region 2019
Grant No. RRC/10/2019 (Moravian-Silesian Region)

• IT4Innovations excellence in science
Grant No. LQ1602 (Ministry of Education, Youth and Sport of the Czech Republic)

• Runtime Exploitation of Application Dynamism for Energy-efficient eXascale computing

131



132 List of Projects Appendix B

(READEX)
Grant No. 671657 (EU Horizon 2020 Research and Innovation Programme)

• Efficient lifetime estimation techniques for general multiaxial loading
Grant No. GA15-18274S (Czech Science Foundation (GACR))

Student Grant Competition Projects of VSB-TU Ostrava:

• Matematické modelování a vývoj algoritmů pro výpočetně náročné inženýrské úlohy X
(Mathematical modeling and algorithm development for computationally intensive
engineering problems X)
Grant No. SP2024/067

• Matematické modelování a vývoj algoritmů pro výpočetně náročné inženýrské úlohy IX
Grant No. SP2023/067

• Matematické modelování a vývoj algoritmů pro výpočetně náročné inženýrské úlohy VIII
Grant No. SP2022/42

• Matematické modelování a vývoj algoritmů pro výpočetně náročné inženýrské úlohy VII
Grant No. SP2021/103

• Matematické modelování a vývoj algoritmů pro výpočetně náročné inženýrské úlohy VI
Grant No. SP2020/114

• Matematické modelování a vývoj algoritmů pro výpočetně náročné inženýrské úlohy V
Grant No. SP2019/84

• Matematické modelování a vývoj algoritmů pro výpočetně náročné inženýrské úlohy II
Grant No. SP2016/178

• PERMON toolbox development IV
Grant No. SP2018/169

• PERMON toolbox development III
Grant No. SP2017/169

• PERMON toolbox development II
Grant No. SP2016/178


	Contents
	List of Abbreviations and Symbols
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Optimization Overview
	Optimization Problem
	Convexity
	Projection onto Convex Sets
	Projection Examples
	Bound Constraints
	Box Constraints
	Linear Equality Constraints


	Optimality Conditions
	Necessary and Sufficient Optimality Conditions

	Duality and Dual Problem
	Descent Direction

	Implementation of Quadratic Programming Algorithms and Quadratic Programming Benchmarks
	Software Implementing QP Algorithms
	PETSc-TAO
	PERMON

	Hardware Used to Compute Benchmarks
	ARCHER
	LUMI
	MareNostrum 3
	Salomon

	QP Benchmarks
	Random Box-Constrained Problems
	1D Poisson's Contact Problems
	2D Journal Bearing Problem
	3D Linear Elasticity Cuboid Contact Problem
	3D Tunnel Excavation in Fractured Porous Medium
	Support Vector Machine Classification


	Unconstrained Quadratic Programming
	Steepest Descent Methods
	Alternative Step Lengths

	Conjugate Gradient Method
	Minimization over Subspace
	Conjugate Gradient Method
	CG Method Convergence
	Preconditioned CG Method

	Deflation Preconditioner
	Deriving Deflation Preconditioner
	Preconditioned Deflated CG Method
	Preconditioning Effect of Deflation
	Shifting the Eigenvalues
	Deflation Coarse Problem
	Required Accuracy for the Coarse Problem Solution
	Multilevel Deflation
	Implementation
	Results of the Deflated CG Method


	Projection-Based Quadratic Programming Algorithms
	MPRGP Algorithm
	MPRGP Expansion Modifications
	MPRGP with Projected CG Expansion Step
	MPRGP with Projected CG Expansion Step and Fallback
	MPRGP with Efficient Gradient Projections
	Spectral Projected Gradient Method
	Convergence of MPRGP-Type and SPG Methods
	MPSPG Algorithm
	Results


	Preconditioning MPRGP-Type Methods
	Preconditioning in Face
	Approximate Preconditioning in Face
	Preconditioned MPRGP and MPPCG Methods
	Results


	Quadratic Programming with Linear Equality Constraints
	Solution Methods Based on KKT Conditions
	Penalty Method
	Augmented Lagrangian Methods

	Quadratic Programming with Linear Inequality Constraints
	Finite Element Tearing and Interconnecting
	Dualization
	Improving Dual Formulation
	FETI Condition Number and Preconditioning
	FETI: Further Improvements and Beyond Finite Elements
	FETI Coarse Problem
	Energy Efficiency
	Boundary Element Method


	Results
	Solution of Large Scale Contact Problems of Mechanics
	Preconditioned FETI for Elastoplasticity
	Solving Contact Problems without FETI


	Conclusion
	Own Results and Contributions by the Author
	Future Work

	Bibliography
	List of Author's Publications
	List of Projects

