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Abstrakt a přínos práce

Strojové učení (z anglického Machine Learning) je souhrn statistických technik a optimalizač-
ních algoritmů, které se používají k vytvoření modelů na základě trénovacích (vzorových) dat
bez explicitního programování instrukcí v rozhodovacím algoritmu. Cílem je dosáhnout gene-
ralizace modelu z vlastností (rysů) trénovacích dat pro co nejpřesnější predikci na vzorcích,
které nebyly použity v rámci trénovacího procesu. Strojové učení se jako takové považuje za
podoblast umělé inteligence (Artificial Intelligence).

Hlavní náplní této práce je studium použitelnosti klasických modelů strojového učení pro
řešení komplexních a datově náročných aplikací, volba vhodných optimalizačních algoritmů a
jejich adaptace pro paralelní trénování modelů na superpočítačových systémech, v neposlední
řadě také navržení workflow zahrnující efektivní analýzu, fúzování a transformace velkých
„big“ dat. Je věnována také pozornost vhodnému uložení dat např. do formátu HDF5 pro
jejich efektivní paralelní načítání na superpočítačových systémech.

Významná část práce je věnována strojovému učení s učitelem (supervised learning), kon-
krétně klasifikačním modelům typu Support Vector Machines (SVM), jejich přizpůsobení pro
sémantickou segmentaci multispektrálních satelitních snímků v čase a následné použití k lo-
kalizaci výskytu lesních požárů na Aljašce v horizontu jednoho roku. Problematika lesních
požárů byla řešena ve spolupráci se dvěma prestižními výzkumnými pracovišti v USA, kon-
krétně s národními laboratořemi Argonne a Oak Ridge. Pro vlastní natrénování segmentačních
modelů byl použit open-source nástroj PermonSVM, jehož implementace je nedílnou součástí
této disertační práce. Tento nástroj také podporuje trénování pravděpodobnostních modelů
s použitím techniky Plattova škálování v kombinaci s modely typu SVM. Pro řešení opti-
malizační úlohy v rámci trénovacího procesu SVM modelů byly použity a adaptovány řešiče
MPRGP, SMALXE a jejich varianty, které jsou implementované v softwarovém balíku Per-
monQP. Tyto řešiče byly vyvinuty a optimalizovány pro úlohy kvadratického programování
a jsou dále rozvíjené skupinou profesora Dostála na Katedře aplikované matematiky (VŠB –
Technická univerzita Ostrava) a na Ústavu geoniky AV ČR.

Druhá část této práce je zaměřena na strojové učení bez učitele (unsupervised learning).
Konkrétně je zde provedena rešerše metod vektorové kvantifikace založených na algoritmech
Lloydova typu a metod spektrálního shlukování. Dále je představena paralelní implementace
těchto metod v programovacím jazyce C++ a statistický přístup, který je založený na Bart-
lettově testu homogenity variancí pro odhad násobnosti nulových vlastních čísel Laplaceovy
matice. Počet nulových čísel této matice odpovídá počtu komponent souvislosti podobnost-
ního grafu, které mohou představovat např. objekty na obrazové scéně. V praktické části jsou
představeny dvě aplikace. První z nich se zaměřuje na detekci křehkých a houževnatých lomů
na vzorku ocele API 5L X-70 pomocí technik vektorové kvantifikace. Ve druhé aplikaci je
ukázáno použití spektrálního shlukování pro segmentaci obrazu bez anotovaných dat.



Hlavní přínos práce z pohledu autora spočívá v propojení několika disciplín zahrnujících
paralelní programování pro distribuované trénování modelů, zpracování velkých dat a obrazu,
strojové učení, statistiku, optimalizace a geoinformatiku, dále pak naprogramování softwaro-
vého balíku PermonSVM v programovacím jazyce C a vylepšení workflow pro lokalizaci lesních
požárů na Aljašce pro použití klasických modelů strojového učení typu SVM. Přínosy práce
zahrnují také rešerši teoretického základu SVM klasifikátorů a adaptace algoritmů SMALXE
a MRPGP v rámci trénovacího procesu pro klasifikátory výše uvedeného typu. V části práce,
která je zaměřená na strojové učení bez učitele, pak mezi přínosy práce lze zahrnout paralelní
implementaci algoritmů Lloydova typu, drobnou modifikaci statistické metody pro odhad po-
čtu komponent podobnostního grafu (odpovídá počtu nulových čísel Laplaceovy matice), a
dále pak dvě aplikace z reálného světa, konkrétně detekce křehkých a houževnatých lomů a
segmentaci obrazu.
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trénování modelů, sémantická segmentace obrazu, SMALXE, strojové učení bez učitele, stro-
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vektorová kvantifikace, vzdálený průzkum Země, zpracování velkých dat



Abstract and Contributions

Machine learning is a set of statistical techniques and optimization algorithms used to create
models based on training data without explicitly programming instructions in the decision
algorithm. The goal is to achieve the generalization ability of a model from training data
properties (features) for the most accurate prediction on unseen samples. Note that machine
learning is considered as a subfield of artificial intelligence.

This work focuses mainly on studying the applicability of the classical machine learning
models for solving complex and data-intensive applications, choosing appropriate optimization
algorithms and their adaptation for parallel training of models on supercomputer systems, and
last but not least on designing and programming a workflow involving efficient analysis, fusion
and transformation for big data. Attention is also paid to storing the data in HDF5 file format
for efficient parallel I/O operations on supercomputer systems.

A significant part of the work is devoted to supervised machine learning, specifically
Support Vector Machines (SVM) classification models, their adaptation for semantic segmen-
tation of multispectral-temporal satellite images, and subsequent use for wildfire localization
in Alaska in a time horizon of one year. This application was addressed in collaboration with
two world-leading research institutes in the USA, namely Argonne and Oak Ridge National
Laboratories. The open-source tool called PermonSVM was used to train such segmenta-
tion models; implementation of this software is another integral part of this doctoral thesis.
PermonSVM also supports training probabilistic models using Platt’s scaling combined with
models of the SVM type. The solvers MPRGP, SMALXE and their variants implemented in
the PermonQP software package were used and adapted to solve an underlying optimization
problem associated with training the models. These solvers have been developed and opti-
mized for quadratic programming problems. They are further developed by Professor Dostal’s
group at the Department of Applied Mathematics (VSB – Technical University of Ostrava)
and the Institute of Geonics of the Czech Academy of Sciences.

The second part of this thesis focuses on unsupervised machine learning. Specifically,
a review of methods related to vector quantification based on Lloyd-type algorithms and
spectral clustering is conducted. Furthermore, a parallel implementation of the vector quan-
tification methods in the C++ programming language and a statistical approach based on
the Bartlett’s test of homogeneity of variances for estimating the multiplicity of zero eigenval-
ues related to the Laplace matrix are presented. The multiplicity of zero eigenvalues of this
matrix corresponds to the number of components of the similarity graph (equals number of
zero eigenvalues associated with graph Laplacian matrix); these components could represent
objects in an image scene for example. In the practical part, two applications are introduced.
The first focuses on detecting brittle and ductile fractures on steel sample (API 5L X-70) using
vector quantization techniques. The second application shows employing spectral clustering



for image segmentation without annotated data.
The main contribution of this thesis (from the perspective of the author) consists in

connecting several fields, including parallel programming for distributed model training, big
data and image processing, machine learning, statistics, optimization, and geoinformatics,
as well as the programming of the PermonSVM software package in the C programming
language, and the improvement of the workflow for the wildfires localization in Alaska used
for preparing data for classical machine learning models, e.g. SVM. Contributions of the work
also include a compilation of the theoretical background related to SVM classifiers and the
adaptation of the SMALXE and MRPGP algorithms in the training these classifiers. Further,
contributions in part related to unsupervised learning include a parallel implementation of the
Lloyd-type algorithms, a slight modification of a statistical method for estimating the number
of components of a similarity graph, and two real-world applications, specifically brittle and
ductile fracture detection and image segmentation.

Keywords

artificial intelligence, Bartlett’s test of homogeneity variances, big data analysis, clustering,
duality, Google Earth Engine, quadratic programming, brittle and ductile fractures, MPRGP,
MTBS, parallel model training, semantic segmentation, SMALXE, unsupervised learning, su-
pervised learning, Support Vector Machines, spectral clustering, vector quantification, volu-
metric images, remote sensing, wildfires localization in Alaska
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Chapter 1

Introduction

“The 19 th century was the Age of steam, the epoch of vintage locomotives, mar-
vellous industrial factories, and the first Benz’s automobile, that children know at
an elementary school. Surprisingly, the first Turing-complete, the steam-powered
computer called Analytical Engine was designed by an inventor Charles Babbage.
He assembled small parts of this machine before his death in 1871 , however, An-
alytical Engine was not completely built until 1991 . Nowadays, this machine is
exposed at the Science Museum of London.”

From the same point of view, the 20th century is referred to be the era of the Digital
revolution – also known as the Third industrial revolution. We could say, it was literally
started in 1947 when three researchers John Bardeen, Walter Brattain, and William Shockley
invented and presented a transistor at Bell Labs (Murray Hill, New Jersey). It took almost
six years after the presentation at Bell Labs then, at the University of Manchester, the first
transistor computer constructed by Richard Grimsdale and D. C. Webb became operational.
Years between 1947 and 1964 are known as the era of the second generation of computers,
in which the ground-breaking semiconductor devices were exploited instead of vacuum tubes
used in the first generation. The notable representative of this second generation is scientific
computer IBM 7090 with the processing speed of around 100 Kflops/s that was designed for
“large-scale scientific and technological applications.”

In 1958, Jack Kilby, American electrical engineer, along with Robert Noyce took part in
the realisation of the first integrated circuit. Kilby’s invention, for which he was awarded
the Nobel Prize in Physics in 2000, laid down the foundations of microprocessors and the
next generations of computers. A hallmark of the third (1965− 1971) and the fourth (1971−
1980) generations was improving integrated circuits (IC) and very-large-scale integration of
IC leading to the invention of the microprocessor, respectively. In 1982, Japan Ministry
of International Trade and Industry initiated using massively parallel processing in computer
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systems, called the fifth generation of computer systems, as a platform for future development
in the artificial intelligence (AI). It was the inception of what that, today, the experts call the
Fourth industrial revolution, in which AI plays a significant role.

Since 1871 through innovation of microprocessor in 70’s, and Japan Ministry initiative in
1982, computers and their abilities have changed dramatically and, especially as they have
been marked by incredible progress in the last two decades. For example, recent smartphone
flagships are hugely more powerful than computers even just 10 years old. Internet users,
not only on the social networks, and scientists in application research create a mind-blogging
amount of data per day, therefore developing advanced technologies is mostly driven by col-
lecting/storing and analysing such amount of data - by modern buzzwords called “big data.”

Alongside with innovation of hardware, leading technology giants, namely Google, Mi-
crosoft, Apple, Netflix, Facebook, Amazon, Uber, and Tesla make trends in developing AI
and machine learning (ML) algorithms. Essentially, AI is a capability of a computer perform-
ing tasks that are characteristic of human intelligence while ML is a category of algorithms
that allow software to automatically learn and improve from experience without being ex-
plicitly programmed. From this point of view, AI is a kind of software written at a highly
abstract level that solves general problems using, e.g. knowledge bases, and employing ML
techniques. The relationship is depicted as a Venn diagram in Figure 1.1.

Artificial 

Inteligence

Knowledge BasesClustering

Examples

Machine

Learning

Representative

Learning

Dictionary Learning

Deep

Learning

Multilayer perceptron

Figure 1.1: A Venn diagram illustrating that artificial intelligence employes machine learn-
ing, and, how deep learning is a kind of representative learning, which, in turn, is a kind of
machine learning. Each section of the Venn diagram includes an example.
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Acceptable performance of ML methods highly depends on right data representation, e.g.
using features engineering methods. Representative learning is a set of techniques that allows
a system (e.g. a new movie recommendation system implemented at the Netflix) to determine
such an appropriate features or data representation automatically to perform a specific task.
The prevailing (deep) neural networks [1] incorporate feature engineering inherently so that
a series of hidden layers extract abstract features. It allows the computer system to build
complex concepts out of simpler ones hierarchically, e.g. representing an image of a person
face by combining corners and contours that are in turn defined in terms of edges [2, 3]. For
this reason, the deep learning is considered to be a part of the representation learning [4].

In 1997, Tom M. Mitchell, American computer scientist and a professor at the Carnegie
Mellon University, provided a widely quoted, more formal definition of the algorithms studied
in the ML field:

“A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P if its performance at tasks in T, as measured
by P, improves with experience E.” – Tom M. Mitchell, Machine Learning [5].

According to a concept and purpose, we commonly distinguish 3 groups of the ML al-
gorithms, namely supervised [6], unsupervised learning [7], and the third ML paradigm is
related to the reinforced learning [8, 9], see illustration in Figure 1.2.

Machine Learning

Supervised 
learning

Unsupervised
learning

Reinforced 
learning

Classification Clustering

Agent learns to interact 
with environment to 
achieve a reward.

Figure 1.2: ML subgroups.

As the name suggests, the supervised learn-
ing is the group of algorithms that learning pro-
cess is governed. An essential idea of this ML
type is to predict the outcome given a set of
input-output, i.e. samples-labels, pairs that is
called training dataset. On the other hand, un-
supervised learning algorithms are formulated in
a such way that they identify commonalities,
patterns, or hidden structures of unlabelled data.

The ML researchers observe, the learning
process could be considerably improved in the
sense of accuracy and time-consumption, when
unlabelled and labelled data are reasonably com-
bined. In application domains that unlabelled
data are plentiful with a small proportion of la-
belled samples, semi-supervised learning [10] al-

gorithms could provide a powerful framework, which is considered as a halfway between the
supervised and unsupervised learning. Typically, the techniques make use of unlabelled data
for training that is improved by means of exploiting labelled samples. The acquisition of
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labelled data, which commonly present some a priori knowledge associated with the problem,
requires the human experts and/or additional physical experiments.

The last learning paradigm mentioned above follows the carrot and stick policy. Specif-
ically, an agent (robot or software component) learns how to interact with the surrounding
environment, and to behave in it. An agent decision is quantifying so that it gets rewards (the
carrot) when it makes a correct response or is punished (the stick) otherwise. It allows teach-
ing an agent or series of agents to solve complex problems such as a resource management
in computer cluster [11], traffic light control [12], or achieving super-human performance to
beat the best players of video games – in the Dota 2 (the OpenAI platform) [13]. Nowadays,
OpenAI is mainly known for services based on generative AI such as ChatGPT [14], Dall-E
[15], and SORA [16]. The last mentioned product (SORA) has been lauched 2 weeks before
this thesis submission, it is a diffusion model for generating realistic videos from text prompts.

1.1 Thesis description and objectives

This doctoral thesis is closely connected with the ongoing ML research at the Department
of Applied Mathematics (VŠB – Technical University of Ostrava) and Institute of Geon-
ics (Czech Academy of Sciences) in cooperation with two world-leading research institutes,
namely the Argonne National Laboratory and the Oak Ridge National Laboratory (USA).
The thesis was completed under the guidance of two advisors. The principal supervisor of
this thesis is doc. Ing. David Horák, Ph.D. from VSB – Technical University of Ostrava and
the Institute of Geonics, while the co-supervisor Dr. Richard Mills represents the Argonne
National Laboratory.

The general aim of the thesis is to study the applicability of classical ML models for solving
complex and data-intensive applications, adapting optimization solvers for efficient parallel
training of the ML models on supercomputer systems, and demonstrating the ability of the
classical approaches on real-world applications.

More specifically, it consists of two parts related to supervised and unsupervised learning.
The integral part of the first one is associated with the background of classification approaches
based on Support Vector Machines (SVMs), which belong to maximal-margin models, and
adapting algorithms for quadratic programming (QP) problems developed by Prof. Dostál’s
group. These algorithms are then subsequently used to solve underlying optimization prob-
lems arising from the SVM formulations so that they allow the training of the models in
parallel using a (multi-node) multi-GPU approach. Note that traditional ML libraries are
limited to up to tens of thousands of samples to solve the complete SVM dual formulations
and, moreover, do not support multi-node multi-GPU training of these classification mod-
els. A software package called PermonSVM [17] outperforms these issues; The largest full
dual problem successfully solved using PermonSVM was the benchmark of suspicious URL
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Figure 1.3: PermonSVM and PermonQP are mentioned as external software libraries, which
use PETSc. On-line available on the following PETSc webpages https://petsc.org/rele
ase/#toolkits-libraries-that-use-petsc.

prediction [18] with more than 1.6 million training samples and over 3 million features. Fur-
thermore, benchmarking on the fastest supercomputers in the world (Frontier and Summit)
showed that PermonSVM could effectively scale up to hundreds of GPUs, solving relaxed-bias
formulations. The implementation of PermonSVM is another core part of this thesis. The
package is programmatically an extension of the PermonQP module, which is written on the
top of the PETSc framework [19]. We are grateful for the success that PermonSVM, as well
as the whole of the PERMON toolbox, are incorporated as external software that uses the
PETSc framework, see Figure 1.3 on the previous page. This is one of the great achievements
presented in this work.

The scalability of the QP algorithms implemented in PERMON used for training of mod-
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CHAPTER 1. INTRODUCTION

els and PETSc as a building block became the main reasons for fruitful collaboration with
world-leading research institutes Argonne and Oak Ridge National Laboratories (USA), aimed
at wildfires localization in Alaska. From the author’s perspective, improvement of a model
used in this application and its optimization are the most significant success achieved during
his doctoral studies. The attained results were presented at the premier international confer-
ences such as: the AGU Annual Meeting (USA), the IALE North America Annual Meeting
(USA), the IEEE International Conference on Data Mining (USA), the SIAM Conference on
Computational Science and Engineering (NL). The author of this thesis gave an invited talk
at Argonne National Laboratory at the LANS Seminar series; please visit the following link
for further info https://www.anl.gov/event/wildfires-identification-in-alaska-u

sing-satellite-images-and-machine-learning.
The second part of this thesis focuses on the topics of unsupervised learning, mostly clus-

tering approaches. This part consists of the very first results on the ML topics attained
during the author’s doctoral studies. The theoretical background presented there is outlined
in the form of a brief review and is related to vector quantification based on the Lloyd-type
algorithms and spectral clustering. Furthermore, a parallel implementation of the vector
quantification methods and a statistical approach based on the Bartlett’s test of homogeneity
of variances for estimating the multiplicity of zero eigenvalue of the Laplace matrix are pre-
sented as well. In the practical part, two applications are introduced. The first one shows the
detection of brittle and ductile fracture on a steel sample (API 5L X-70) using vector quan-
tification techniques, and the second one employes spectral clustering for image segmentation
without annotated data.

The results presented in this thesis are supported by the author’s publications in journal
papers and conference papers. The list of these publications can be found in Appendix A.
This thesis is also supported by research projects in which the author participates, involved,
or is a principal investigator. The complete list related to these projects can be found in
Appendix B.

1.2 Outline

The thesis is organized as follows:
Chapter 2 and Chapter 3 provide theoretical background concerning the hard-margin

classifier of the SVM type and its soft-margin variants for non-linearly separable training data
set, respectively. Chapter 3 outlines two soft-margin variants commonly known as the primal
l1-loss and l2-loss SVM formulations, dualization of these formulations using the Lagrange
duality approach, and introducing their primal and dual relaxed-bias variants. Comparison of
the standard (complete) and relaxed-bias l1-loss and l2-loss soft-margin SVM formulations
on the (initial) benchmark related to wildfire localization concludes Chapter 3.
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Chapter 4 introduces and visually demonstrates evaluating classification models using
various types of metrics, such as precision, sensitivity, F1, Intersection over Union (IoU), and
others. In this chapter, an approach based on grid search combined with cross-validation for
an optimal selection of model parameters is also presented.

Chapter 5 outlines an adaptation and optimizing algorithms MPRGP and SMALXE im-
plemented in PermonQP for training SVM models. This includes ingredients associated with
an optimal initial guess, adaptive expansion step length for the MPRGP algorithm, and test-
ing of the SMALXE algorithm such as SMALXE-M and SMALXE-ρ.

Chapter 6 describes the implementation details of the package PermonSVM used for train-
ing classification models of the SVM type in parallel supporting multi-node multi-GPU train-
ing on NVidia and AMD graphic cards using the PETSc backends for CUDA and HIP, respec-
tively. Effectively loading data employing the HDF5 file format and demonstrating parallel
scalability of the package are presented and discussed as well.

Chapter 7 summarizes results attained by collaborating with the Argonne and Oak Ridge
National Laboratories on an application aimed at wildfire localization in Alaska. This chapter
also describes an improved workflow involving efficient analysis, fusion, and transformation for
multispectral-temporal satellite images, streaming and visualization data from Google Earth
Engine. This workflow was written entirely in Python, based on libraries such as branca [20],
GDAL [21], Google EE Python API [22], folium [23], OpenCV [24], pandas [25], RAPIDS
[26], scikit-learn [27], scipy [28], and others.

The following two sections are related to unsupervised learning topics focused on clustering
approaches. Chapter 8 is related to vector quantification techniques based on the Lloyd-type
algorithms such as k-means, k-means++, and their variants like PAM and others. This
provides a brief description of the theoretical framework of this algorithm, and a parallel
implementation in the C++ programming language is also discussed. The application for
detecting brittle and ductile fracture areas concludes this chapter. While Chapter 9 introduces
ability techniques based on spectral clustering for image segmentation without annotated data.
This chapter briefly provides theoretical background related to unnormalized and normalized
spectral clustering and outlines a method for estimating the multiplicity of zero eigenvalues
of the Laplace matrix based on the Bartlett’s test of homogeneity of variances.

Chapter 10 offers conclusions and an overview of the author’s contributions to the topics
introduced in thesis.
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Chapter 2

Maximal-margin classifiers

This chapter introduces the theoretical background concerning maximal-hard-margin classi-
fiers, which are represented by hard-margin Support Vector Machines (SVM) in this thesis. In
Section 2.1, we begin with motivation, where we demonstrate a classification approach based
on the least squares model. Unfortunately, this approach does not provide any constraints
on model qualities implicitly. Thus, we introduce the SVM model, which can overcome this
issue. First, we outline a measure for quantifying a classifier capacity (and complexity) in
Section 2.2, which was developed by Vapnik and Chervonenkis. This measure is commonly
known as the Vapnik-Chervonenkis dimension in the ML community. A binary classifier hav-
ing this dimension reasonably small attains a good generalization ability in the sense of its
capacity and complexity. This assumption is essential for formulating an SVM classifier, which
is introduced in its primal formulation later in Section 2.2. Further, the dualization of this
primal formulation based on the Lagrange duality is discussed and outlined in Section 2.3.

Unless otherwise stated, let us consider a labelled data set belonging to two classes (cat-
egories) such that samples are linearly separable. It means there exists a hyperplane
separating samples from the labelled data set into 2 groups such that samples in each group
belong to same category. We then define the hyperplane H as follows:

H
def= {x ∈ Rn : ⟨w,x⟩+ b = 0}, (2.1)

where w ∈ Rn, w ̸= 0 is a normal vector of the hyperplane H and b ∈ R is its bias. The vector
w (associated with weights in ML models) together with a bias b are learnable parameters of
ML models, including a single-layer perceptron or a neural network. Considering a connection
to a context of ML, the weights control strengths of an input components, e.g. a sample
attributes, to an output such as a classification function that the output is expressed as a
weighted sum and where the bias is a constant term adjusting the strengths.
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2.1 Motivation

Let us firstly denote a training set in a standard notation as a set of sample-label pairs such
that its ordering is not mandatory:

Xtrain
def= {(x1, y1) , (x2, y2) , . . . , (xm, ym)}. (2.2)

Here, we assume that samples xi ∈ Rn, for i = 1, 2, . . . , m belong to two categories. We can
encode these two categories by means of target labels y1, . . . , ym

1 so that the corresponding
target values are taken from the following set Y = {−1, 1}.

Let still consider that samples x1, x2, . . . , xm, are linearly separable. Then, we find
parameters w ∈ Rn and b ∈ R associated with a linear model so that:

⟨w,xi⟩+ b ≥ 0 ∧ yi = +1

⟨w,xi⟩+ b < 0 ∧ yi = −1

⎫⎬⎭ i = 1, 2, . . . , m. (2.3)

A naive approach of determining model parameters would be based on fitting it on la-
belled (input) samples employing linear regression, which is briefly discussed in the following
text. While a linear regression is widely used for predicting continuous target variables, i.e
regression task, it can be slightly modified for classification problems. For training a classi-
fication model using a linear regression approach, the samples become explanatory variables
and labels are then considered as dependent. After the regression model is determined, we
can straightforwardly set a discrimination function2 by means of the attained hyperplane H

associated with the linear model so that:

hΘ(x) ≥ 0 ⇐⇒ ˆ︁y = +1

hΘ(x) < 0 ⇐⇒ ˆ︁y = −1

⎫⎬⎭ i.e. sign(hΘ(x)) =

⎧⎨⎩ˆ︁y = +1 if hΘ(x) ≥ 0

ˆ︁y = −1 if hΘ(x) < 0
(2.4)

where:
hΘ(x) def= ⟨Θ0,x⟩+ Θ1 (2.5)

is the model defined by the vector of parameters Θ =
[︂
ΘT

0, Θ1
]︂T

, specifically:

Θ0 = w, Θ1 = b. (2.6)

Fitting the model hΘ(x) using the linear regression approach on the training set Xtrain is

1We can convert categorical variables into integer format using an label encoding approach such as an
ordinal or one-hot, when a clear ordering of categories is defined. We refer the following tutorial [29] for
further details.

2A discrimination function is basically a decision rule that allows us to decide to which class a sample x
belongs to.
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drawn on minimizing the Residuals Sum of Squares (RSS), which is defined as:

RSS def=
m∑︂

i=1
(yi − ˆ︁yi)2 =

m∑︂
i=1

[yi − sign(hΘ(xi))]2 . (2.7)

The corresponding minimization problem reads as follows:

Θ∗ = arg min
Θ∈Rn+1

m∑︂
i=1

[yi − sign(hΘ(xi))]2 . (2.8)

We can find the solution Θ∗ associated with this optimization problem iteratively employing
a first-order optimization algorithm, gradient descent for example.

Now, let us take a closer look at the solution Θ∗ related to model parameters and discuss
its quality, limits and suitability of the model hΘ(x) for classification problems. Recall that a
model minimizes RSS, which measures a level of variance in a training data set Xtrain, is not
explained by the regression model itself. Since a standard deviation is sensitive to outliers,
the model is consequently impacted by samples which are significantly different from the rest
ones in a data set Xtrain. Considering these remarks, we can subsequently conclude that the
model hΘ(x), which is determined by means of performing a linear regression, besides the
discriminant function (2.4) is not convenient enough for classification problems. This arises
from a hypothesis of linear dependency among attributes and target labels that along with
the underlying loss function RSS, which the model hΘ(x) minimizes as we mentioned above,
causes a high sensitivity of the model to outliers.

Instead of considering linear dependency among attributes and labels, we can think about
linear separability of samples associated with a binary classification problem and formulate the
problem of finding a separating hyperplane in a more convenient way. The simplest concept
for supervised learning of (binary) linear classifiers represents a perceptron such as McCulloch-
Pitts’ model, or its variants and adaptations. These approaches are more deeply investigated
in [30]. Unlike RSS as the objective function used in linear regression, a perceptron of its
initial architecture minimizes ReLU (Rectified Linear Unit) [31] during a model training as
follows:

arg min
Θ∈Rn+1

m∑︂
i=1

[−yihΘ(x)]+
def= arg min

Θ∈Rn+1

m∑︂
i=1

max{0, −yihΘ(x)}, (2.9)

where hΘ(x) is the linear model (2.5) and the ReLU function defined as follows:

fReLU(z) = max{0, z}, (2.10)

is piecewise linear, which yields the input value z directly when z is positive, otherwise, it
results to zero.

Let us examine an objective function (2.9) associated with a training of a model related to
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a perceptron in more details. Let consider that a sample x is correctly classified by means of
the linear model hΘ(x) and the discrimination function (2.4). Then, the value related to the
term −yihΘ(xi) is negative, which outcomes that ReLU outputs zero. On the other hand, this
value equals a perpendicular distance from a sample x to the separating hyperplane H in the
case of a sample misclassification. As a consequence of these observations, a training phase
of a perceptron converges when a resulting model classifies all training samples correctly.
Since there are no constraints on hyperplane qualities, the optimization problem (2.9) has
infinitely many solutions so that resulting models have more or less good generalization ability,
demostrated in Figure 2.1. This actuality depends on initial weights and an arrangement of
feeding samples into a training process.

Class A

Class B�

� �

� 

Feature #1

F
e

a
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 #
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Figure 2.1: This example depicts two linear models and illustrates their generalization ability
for a binary classification problem. Both models separate training samples Xtrain correctly.
However, they differ in the distance of a related hyperplane (representing a model itself) to
the closest point across classes. The primary goal is to maximize this distance to attain a
good quality model. This example shows that the hyperplane H1 (model 1) has a distance
greater than the hyperplane H2 (model 2). Thus, we can conclude that the model 1 performs
better on unseen samples than the model 2. We demonstrate this fact on two test samples
depicted as encircled points. The model 1 classifies these samples correctly. On the other
hand, the model 2 has a 0% success rate on classifying the unseen samples.
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2.2 Support vector machines for classification

A framework for quantifying a model performance was introduced by Vapnik and Chervo-
nenkis in their computational learning theory [32], which attempts to explain a training pro-
cess from a statistical point of view. They showed that a binary classifier having a reasonably
small Vapnik-Chervonenkis dimension (VC dimension) attains a good generalization ability
in the sense of its capacity and complexity; we denote this dimension as dimvc in the fol-
lowing text. For linear classifiers, an upper bound of the VC dimension is proportional to a
geometric margin γ. To define this margin, still assume that the training samples belonging
to Xtrain ⊂ Rn are linearly separable.

Definition 1 (Geometric margin) Let H be a hyperplane that separates a training data set
Xtrain associated with a binary classification problem. A geometric margin of this hyperplane
is defined as a distance from the hyperplane H to the closest point across both classes:

γ(w, b, Xtrain) def= min
(x,y) ∈Xtrain

γ̂(w, b, (x, y))
∥w∥

, (2.11)

where γ̂(w, b,x) is a functional margin such that:

γ̂(w, b, (x, y)) def= y (⟨w,x⟩+ b) . (2.12)

Unlike a functional margin γ̂(w, b, (x, y)), the model parameters w and b associated with
a separating hyperplane H are normalized with respect to ∥w∥ in the case of its geometric
margin γ(w, b,Xtrain). Thus, a scale of γ(w, b,Xtrain) is not affected by the magnitude of w
and b, which means that a geometric margin is a parameter scaling invariant [33].

Theorem 1 (Vapnik-Chervonenkis dimension) Let X = {x1, x2, . . . , xm} ⊆ {x ∈ Rn :
∥x∥ ≤ R}, where X be a set of samples belonging to Xtrain and R is a radius of the smallest
hypershere that covers X:

R = max
x∈Xtrain

∥x∥. (2.13)

Further, let Θ =
[︂
wT , b

]︂T
be a vector of parameters and let S ⊆ X then:

HS, Λ
def=
{︁
x = sign(hΘ(x)) : min

x∈S
|hΘ(x) | = 1 ∧ 0 < ∥w∥ ≤ Λ

}︁
(2.14)

be a hypothesis class related to linear classifiers. Then, an upper bound of dimvc
(︁
HS, Λ

)︁
satisfies:

dimvc
(︁
HS, Λ

)︁
≤ min

{︃⌈︂
R2Λ2

⌉︂
, m

}︃
+ 1, (2.15)
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CHAPTER 2. MAXIMAL-MARGIN CLASSIFIERS

where Λ def= γ(w, b,Xtrain)−1, and m = card(Xtrain) – a number of training samples.

An existing theory to Theorem 1 discussed by Burges, Vapnik in [34, 35] and Jayadeva [36]
provides a tighter upper bound on a classifier complexity. It states that a classifier minimizing
R2Λ2 in the sense a bias-variance tradeoff can be expected to give a better generalization
performance.

This approach is considered as a general framework based on the VC dimension for quan-
tifying a performance of a binary classifier in the sense of its complexity and capacity so far.
The upper bound of the VC dimension also gives us a direction on how we can make to design
a classifier of a good performance, i.e. a classifier with a small VC dimension. Since R is a
radius of the smallest hypersphere that covers all samples from the training data set, the value
of R is fixed for a given Xtrain. Thus, we need to minimize Λ to obtain a reasonable small value
related to the bound R2Λ2. Consequently, we find a separating hyperplane H with a maxi-
mal geometric margin, which is an essential ingredient for a definition of a maximal-margin
classifier. Let us introduce and formulate a classifier that meets the qualities associated with
a maximal geometric margin mentioned above using a scalar projection at first.

Definition 2 (Scalar projection) Let f and g be vectors belonging to Rn such that f ̸= g,
and let φ be an angle between f and g. A scalar projection pg related to a projection f onto
g is given by:

pg(f) = ∥f∥ cos φ = ⟨f , ˆ︁g⟩, (2.16)

where ˆ︁g def= g
∥g∥ .

Let w be a normal vector related to a hyperplane H (2.1) and x be a vector in a sample
space Rn. We assume this sample vector x is the nearest one to the hyperplane H. Using
these assumptions and additionally considering ˆ︁w def= w

∥w∥ , we can determine a projection of
the sample vector x onto w by means of a scalar projection introduced above so that:

pw(x) = ⟨x, ˆ︁w⟩ =
n∑︂

i=1
ˆ︁wixi = ∥x∥ cos φ. (2.17)

Taking into account symmetry related to a dot product operator and consider c ∈ R be
an arbitrary constant such that:

∥x∥ cos φ = ⟨w,x⟩
∥w∥

≥ c ⇒ ⟨w,x⟩
∥w∥

− c ≥ 0. (2.18)

The last inequality in (2.18) is associated with a decision rule, which we previously defined
in (2.4) for a linear model that is trained using a linear regression approach with a slight
modification for classification tasks.
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Definition 3 (Decision rule for linear classifier) Let hΘ(x) be a model related to a lin-
ear classifier as follows:

hΘ(x) = ⟨Θ1,x⟩+ Θ0 = ⟨w,x⟩+ b, (2.19)

where w represents a normal vector of a hyperplane H and b denotes a bias, i.e. a displacement
of a hyperplane from an origin. Consider that target values belong to the set Y = {−1, 1}.
Then, we can predict a category of a random sample x by means of the following discrimination
(classification) function:

⟨w,x⟩+ b ≥ 0 ⇐⇒ y = +1 . . . positive class

⟨w,x⟩+ b < 0 ⇐⇒ y = −1 . . . negative class

⎫⎬⎭ i.e. y = sign(⟨w,x⟩+ b). (2.20)

Combining the decision rule definition and the last inequality in (2.18), we can observe
that the hyperplane offset from origin along w is given by:

b = −c ∥w∥ ⇒ ˆ︁b def= b

∥w∥
= −c ⇒ hΘ(x) = ⟨w,x⟩+ ˆ︁b. (2.21)

So far, we have analyzed the hyperplane qualities. Additionally, it is reasonable to require
that the linear model defined by the hyperplane H also maximizes a geometric margin. We
know, based on the previous discussion and remarks, this model quality reflects classifier
robustness in the sense of its generalization performance. This ability is built by means of
adapting the training data set Xtrain to perform a related inference process using a trained
model on previously unseen samples.

In order to supervised learning in this part and mostly in the rest of this thesis, we
distinguish two phases associated with developing ML models. Specifically, they are a training
phase followed by a test phase. Since we will not run with semi-labeled or unlabelled samples
in these phases, it seems to be reasonable denoting these unseen samples as the test data set
Xtest for improving readability and comprehension of the following text. Further, recall that
training Xtrain and unseen samples Xtest are independent and identically drawn from the same
probability distribution p (x, y):

Xtrain
IID∼ p (x, y) ∧ Xtest

IID∼ p (x, y) . (2.22)

Let still assume that the given training samples are linearly separable and let σ ∈ R.
We can now formulate finding a maximal-margin (linear) model as an optimization problem
so that each training sample x has the geometric margin γ(w, b, (x, y)) at least σ ∈ R+.

- 17 -



CHAPTER 2. MAXIMAL-MARGIN CLASSIFIERS

Formally, given Xtrain, find σ∗, w∗, b∗ such that:

(σ∗, w∗, b∗) = arg max
σ,w,b

σ s.t.

⎧⎨⎩ 0 ≤ σ ≤ y[⟨w,x⟩+b]
∥w∥ ,

∀ (x, y) ∈ Xtrain.
(2.23)

Right now, let us take a closer look at this optimization problem. An associated objective
function σ is linear and therefore convex. However, ∥w∥ in a denominator of an upper bound
in (2.23) leads to non-convexity of this constraint and conduct the non-convex problem at all,
see [33] for further details. Comparing to a convex optimization problem, it can be costly and
thus generally harder to attain a global optima in this case. Recall, a convex optimization
problem ensures that every local optimum is actually a global optimum. Thus, we introduce a
chain of transformations and remarks using which we modify the non-convex problem (2.23)
into a convex one.

First, we include ∥w∥ = 1 as an auxiliary constraint into our optimization problem (2.23).
This guarantees that a geometric margin equals a functional margin, which is at least σ for
each sample in the training set Xtrain. This modification results into the following optimization
problem:

(σ∗, w∗, b∗) = arg max
σ,w,b

σ s.t.

⎧⎨⎩ 0 ≤ σ ≤ y [⟨w,x⟩+ b] , ∀ (x, y) ∈ Xtrain,

∥w∥ = 1.
(2.24)

However, the constraint ∥w∥ = 1 is still non-convex. We can simply show that ∥w∥ = 1
in R2 represents an unit circle. In general, it corresponds to a unit hypersphere in Rn, and
thus the constraint is non-convex. To rid of this constraint from the optimization problem, we
can divide the objective function in (2.24) by the norm ∥w∥. Recall, the constraint ∥w∥ = 1
ensures that a geometric margin equals a functional margin in (2.24). So if σ is a lower bound
for a functional margin, then ˆ︁σ = σ

∥w∥ is a lower bound for a geometric margin in the following
optimization problem:

(ˆ︁σ∗, w∗, b∗) = arg maxˆ︁σ,w,b

ˆ︁σ∥w∥ s.t.

⎧⎨⎩ 0 ≤ ˆ︁σ ≤ y [⟨w,x⟩+ b] ,

∀ (x, y) ∈ Xtrain.
(2.25)

Employing our previous remark about scaling invariance (at the beginning of this section)
associated with a geometric margin, we can impose σ = 1 as the scaling parameter value and,
finally, apply the last sequence of modifications:

(w∗, b∗) = arg max
w,b

1
∥w∥

s.t.

⎧⎨⎩ y [⟨w,x⟩+ b] ≥ 1,

∀ (x, y) ∈ Xtrain,
(2.26a)
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≃ arg min
w,b

∥w∥ s.t.

⎧⎨⎩ y [⟨w,x⟩+ b] ≥ 1,

∀ (x, y) ∈ Xtrain,
(2.26b)

≃ arg min
w,b

1
2∥w∥

2 s.t.

⎧⎨⎩ y [⟨w,x⟩+ b] ≥ 1,

∀ (x, y) ∈ Xtrain.
(2.26c)

= arg min
w,b

1
2⟨w,w⟩ s.t.

⎧⎨⎩ y [⟨w,x⟩+ b] ≥ 1,

∀ (x, y) ∈ Xtrain.
(2.26d)

We transformed the initially stated non-convex optimization problem (2.23) into the con-
vex quadratic program (QP) called primal hard-margin SVM that has a quadratic objective
function 1

2∥w∥
2 and affine inequality constraints, which form a polyhedron set C [37]. Using

the fact that yi ∈ Y, we can interpret the set of constraints C so that all training samples lie
on, above or below margins:

⟨w,x⟩+ b = ±1 (2.27)

for positive samples (Class A) or negative samples (Class B), respectively.

Class A 

Class B
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Figure 2.2: The example illustrates a simplified binary classification problem in 2D solved
by a linear hard-margin SVM. Encircled samples represent support vectors. Original image
was downloaded from [38]. It was slightly modified for the purpose of this text.

Samples that exactly lie on the margins (2.27) are called support vectors (SV) - depicted
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as encircled samples lying on the dashed lines in Figure 2.2 (on the previous page). In this
simplified example, the lines represent margins for training samples belonging to R2.

Further, let e ∈ Rm be an all-ones vector, X = [x1, x2, . . . ,xm] ∈ Rn×m corresponds to
training samples, and Yd = diag(y) ∈ Rm×m. We can then rewrite the primal formulation
above into a QP problem in a standard matrix form using a vector of parameters Θ = [w, b] ∈
Rn+1 and matrices above as follows:(︂

PSVM
hard

)︂
: Θ∗ = arg min

Θ

1
2ΘTQΘ s.t. BΘ ≤ −e, (2.28)

where

Q =
[︄
In On,1

O1,n O1

]︄
∈ R(n+1)×(n+1), (2.29a)

B =
[︂
−YdX

T ,−y
]︂
∈ Rm×(n+1), (2.29b)

Θ =
[︄
w

b

]︄
∈ Rn+1. (2.29c)

By solving the optimization problem PSVM
hard (2.28), we attain a linear model hΘ (x), which

maximizes geometric margin γ (w, b,Xtrain) and which is named as a maximal-margin classifier
early in this text. According to the VC dimension definition, we know that such a classifier
reflects robustness in the sense of its generalization performance, as we mentioned in our
previous discussion.

Let us draw attention to the equation (2.27) associated with the margins equal +1 for
positive samples and−1 for negative samples. Notice that this equation represents two parallel
margins and solving the optimization problem PSVM

hard results in the linear model represented
by separating hyperplane H equidistant to these margins. To calculate the distance between
them, let us take a difference vector dsv of support vectors x+

sv and x−
sv. The first one support

vector x+
sv lies on the margin equal +1 and the second support vector x−

sv is associated with
the margin, which equals −1. Let ˆ︁w be a normalized normal vector related to the separating
hyperplane H. The distance between these margins is then determined as a scalar projection
of the difference vector dsv onto the normal vector w as follows (see also Figure 2.2):

⟨dsv, ˆ︁w⟩ = ⟨x+
sv − x−

sv, ˆ︁w⟩ = ⟨x
+
sv,w⟩
∥w∥

− ⟨x
−
sv,w⟩
∥w∥

= 1− b

∥w∥
+ 1 + b

∥w∥
= 2
∥w∥

. (2.30)

Let us note that the problem (2.28) is infeasible if samples in Xtrain are not linearly
separable. More detailed discussion about solvability of this primal problem can be found in
[39].
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2.3 SVM dual formulation

Each convex, and even non-convex, constrained optimization problem P (called primal) can
be transformed into its dual formulation D. This typically provides an approach to solve the
original problem P in an easier way, e.g. by decreasing a computational cost arising from
reduction variables or transforming it into an optimization problem with a more convenient
structure, e.g affine inequality constraints are transformed to simple bounds.3

Note that the significant part related to benchmarks and applications presented in this
thesis is focused on analyzing classification models trained using the PERMON toolbox [40].
More specifically, we employ its extension called PermonSVM [17]. It brings a high-level
API4 for the out-of-the-box abstraction of the SVM formulations and internally sets up an
optimization solver and objects used for training models. A solver interface implemented in
a core module in PERMON is originally designed for QP problems with box and equality
constraints. Let us refer to Chapter 6, where PermonSVM is introduced more in details.

Unless otherwise stated, let z ∈ Rr be a variable. We can then write down a general for-
mulation associated with a QP optimization problem that consists of the prescribed inequality
constraints (a box type) and the equality constraints as follows:

find z∗ = arg min
z

1
2z

TAz − bT
rhsz

subject to

⎧⎨⎩ lb ≤ z ≤ ub,

BEz = cE .

(2.31)

The vector z∗ ∈ Rr corresponds to an optimal solution of the constrained QP problem in-
troduced in (2.31), where A ∈ Rr×r is a symmetric positive definite (SPD), or symmetric
positive semidefinite (SPS), Hessian matrix. The vector brhs ∈ Rr represents a right-hand
side related to the quadratic objective function:

fQP(z) def= 1
2z

TAz − bT
rhsz. (2.32)

As stated above, we consider the following types of constraints outlined for the QP problem
introduced in the formulation (2.31):

• box constraints - these involve a lower bound vector lb ∈ ({−∞} ∪ R)r and an
upper bound vector ub ∈ (R ∪ {+∞})r such that the components corresponding to the
solution vector z must satisfy lb ≤ z ≤ ub. If only a vector lb is given5, we refer these

3The dualization could also transform the original problem P into the dual one D having favourable spectral
properties. This is not generally true in order to solve ML problems of the SVM type.

4Abbreviation API is commonly used in information technology and computer science. It stands for Appli-
cation Program Interface.

5It means that all components of a vector ub, which are associated with an upper bound, equal +∞.
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constraints as a lower bound. Let us note that we do not consider an upper bound for
the QP problems arising from ML models of an SVM type in this thesis.

• equality constraints - this constraint type is characterized using an equality con-
straints matrix BE ∈ Rme×r and a vector cE ∈ Rme , which is an equality constraint
right-hand side. Note that setting the equality constraints is optional for a specification
of an optimization problem in the PERMON toolbox.6

Now, let us take a look at the hard-margin SVM (primal) formulation PSVM
hard that was

previously defined in (2.28). As we can see, the problem consists of inequality constraints.
Unfortunately, these inequality constraints take a different (say general) form than the QP API
implemented in PERMON is designed for; we consider the box constraints as a special case
of these inequality constraints. A useful tool for analyzing constrained optimization problems
and relationships between primal P and dual D formulations is a Lagrangian function L,
which is also known as Lagrangian. Since reviewing the theory related to Lagrange duality
used for convex optimization is out of the scope of this thesis, we recommend the book Convex
optimization [42] written by Boyd and Vandenberghe for additional details.

The essential idea beyond the Lagrange duality is to take the constraints into account by
augmenting an objective function, which is associated with the primal optimization problem
P , using a weighted sum of the functions related to constraints [37, 42]. Employing this
approach, we set up a Lagrangian function, where these weights are represented by means of
the Lagrange multipliers, which are typically called dual variables:

{λ1, λ2, . . . , λs−1, λs} ⊂ {R+ ∪ {0}}s. (2.33)

Definition 4 (Lagrangian for an optimization problem with inequality constraints)
Let us consider an optimization problem with minimized function f0 and inequality constraints
represented using the constraint functions fi=1, ..., s : Rr → R such that:

arg min
z

f0(z) s.t. fi(z) ≤ 0 where i ∈ {1, . . . , s}, (2.34)

where z ∈ Rr denotes a variable. Let ΩI be a domain7 related to the inequality constraint
functions and defined as follows:

ΩI
def=

s⋂︂
i=1

dom fi, (2.35)

6More technical insights regarding the software architecture of the PERMON toolbox and implemented
modules can be found in Václav’s Hapla doctoral thesis [41].

7Note. We interpret the domain ΩI defined in (2.35) as a feasible region, where all inequality constraints
are satisfied.
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where:
dom fi = {z : fi(z) ≤ 0}. (2.36)

Regarding the domain ΩI (2.35), let us assume that this domain is non-empty, i.e. ΩI ̸= ∅.
We can then define a Lagrangian function L : Rr ×Rs → R corresponding to the optimization
problem (2.34) such that:

L (z, λ) def= f0(z) +
s∑︂

i=1
λifi(z) . (2.37)

A domain domL associated with the Lagrangian function L (2.37) equals:

domL = Rs ×DI , (2.38)

where:
DI = {λ : λi ≥ 0, i = 1, 2, . . . , s}, (2.39)

is a set of the Lagrange multipliers.

Concerning Definition 4 and assuming that a number of the Lagrange multipliers equals
to a number of training samples,8 a Lagrangian function, which corresponds to the primal
problem PSVM

hard (2.28), takes the following form:

L (Θ, λ) = 1
2ΘTQΘ + λT (BΘ + e) , (2.40)

where λ ∈ Rm is the vector that consists of the Lagrange multipliers, and ΩI is defined as
follows:

ΩI = {Θ ∈ Rn+1 : BΘ ≤ −e}. (2.41)

Equivalently, we can set up a Lagrangian for the optimization problem (2.26d), where we
consider primal variables as components of the vector Θ =

[︂
wT, b

]︂T
:

L (w, b, λ) = 1
2⟨w,w⟩+

m∑︂
i=1

λi (−yi [⟨w,xi⟩+ b] + 1)

= 1
2∥w∥

2 −
m∑︂

i=1
λi ( yi [⟨w,xi⟩+ b]− 1) .

(2.42)

Note, a vector Θ denotes a vector of parameters associated with an ML model. In order
to an application of SVM, it is better to take into account primal variables as components of

8Recall. We interpret inequality constraints in the last optimization problem introduced in the transforma-
tion chain (2.26d) such that all training samples lie on, above or below respective geometric margins. Thus,
we have introduced the inequality constraint for each training sample in Xtrain.
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a vector Θ. Occasionally, it is suitable to represent primal variables as a vector Θ itself. It
depends on a particular case. Therefore, we often refer to both forms in this thesis.

Recall that our original primal problem (2.28) is convex having a quadratic objective
function and affine inequality constraints. We can directly show that the Lagrangian L
introduced in (2.42) is also convex with respect to the variable Θ:

∇ΘL (Θ, λ) = QΘ + λTB,

∆ΘL (Θ, λ) = Q,
(2.43)

where Q is a symmetric positive semidefinite (SPS) matrix introduced in (2.29a).

Definition 5 (Lagrange dual function for inequality constraints) A Lagrangian dual
function or, shortly, a dual function g(λ) : DI → R is defined as a infimum of a Lagrangian
L (z, λ) over a variable z ∈ Rr for λ ∈ DI such that:

g(λ) def= inf
z∈Rr

L (z, λ) , (2.44)

where ΩI is a feasible set introduced in (2.35).

The concavity of the dual function g(λ) is one of the key property used in convex optimiza-
tion. We proved above that it does not depend on the convexity (or non-convexity) related
to a primal functional P . Considering this observation, we can provide the first insight into
a solution of the primal problem. We take an advantage of it in the following text.

Further, we can effectively express a dual problem D using a dual function previously
defined in (2.44) such that:

d∗ = sup
λ≥0

inf
Θ∈Rn+1

L(Θ, λ) = sup
λ≥o

g(λ) , (2.45)

and the primal problem P by means of swapping infimum and supermum:

inf
Θ∈ΩI

f(Θ) = inf
Θ∈Rn+1

sup
λ≥0

L(Θ, λ) = p∗. (2.46)

As we mentioned earlier in this section, a dual function yields a lower bound on the optimal
value p∗ associated with a primal problem. We can formalize this fact using the following
inequality:

d∗ = sup
λ≥0

inf
Θ∈Rn+1

L(Θ, λ) ≤ inf
Θ∈Rn+1

sup
λ≥0

L(Θ, λ) = p∗. (2.47)

A difference between the value p∗ associated with primal problem P and the value d∗ related
to a dual problem D is called duality gap, i.e. p∗ − d∗.
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Recall. The vectors Θ ∈ Rn+1 and λ ∈ Rm
+ are related to primal respective dual variables.

In the following text, we briefly form the dual formulation. First, we state necessary conditions
for a solution pair (Θ∗, λ∗) to be considered as locally optimal for a primal problem P ,
and a dual problem D either. These conditions are called the Karush-Kuhn-Tucker (KKT)
conditions, and they establish a link between the primal and dual problems as follows:

∇Θ L (Θ∗, λ∗) = 0 (stacionarity) (2.48a)

∇λ L (Θ∗, λ∗) = BΘ∗ + e ≤ 0 (primal feasibility) (2.48b)

λ∗ ≥ 0, (dual feasibility) (2.48c)

(λ∗)T (BΘ∗ + e) = 0. (complementarity) (2.48d)

Additionally, we can explicitly express the KKT conditions above for the SVM model param-
eters w∗ and b∗ so that:

∇w,b L (w∗, b∗, λ∗) = 0, (stacionarity) (2.49a)

∇λ L (w∗, b∗, λ∗) =
m∑︂

i=1
[1− yi (⟨w∗,xi⟩+ b∗)] ≤ 0, (primal feasibility) (2.49b)

λ∗ ≥ 0, (dual feasibility) (2.49c)
m∑︂

i=1
λ∗

i [1− yi (⟨w∗,xi⟩+ b∗)] = 0. (complementarity) (2.49d)

The first condition (2.48a) states that Θ∗, which denotes an optimal solution of a primal
problem P , is a minimizer of L (·, λ∗) over Θ. The conditions (2.48b, 2.48c) bring out that
both the primal and dual variables must satisfy to the constraints to their respective optimiza-
tion problems. The last complementary condition (2.48d) represents a connection between
the primal and dual variables. It implies that a product of the Lagrange multipliers and the
corresponding primal constraints should be zero. This condition summarizes an idea that
either the primal constraints are active (equal to zero), or the dual variables λ are zero for
inactive constraints. We effectively use this condition for reconstructing a bias b from a dual
solution later in the text.

Now, we determine a dual optimization problem related to PSVM
hard (2.28) in a form where a

Gram matrix9 is incorporated. First, we find out a stationary point of the Lagrangian (2.42)
for a fixed λ. We do this by means of setting a gradient ∇Θ L (Θ, λ) to zero. In the case of
an optimization problem related to SVM models, it is convenient to compute such gradient
explicitly and component-wisely with respect to the SVM model parameters w and b. Note,
the dual variable λ is fixed as we mentioned above.

9A Gram matrix is also known as a kernel matrix in machine learning community.
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Recall, a stationary point of some function is a point, where all partial derivatives of this
function equal 0. Let us start to compute a partial derivative of L (w, b, λ) with respects to
w, and set this partial derivative to 0. Then, we obtain:

∂L (w, b, λ)
∂w

= ∂

∂w

(︃1
2∥w∥

2
)︃
− ∂

∂w

m∑︂
i=1

λi [yi(⟨w,xi⟩+ b)− 1] (2.50a)

= ∂

∂w

(︃1
2∥w∥

2
)︃
− ∂

∂w

m∑︂
i=1

λiyi⟨w,xi⟩ −
∂

∂w

m∑︂
i=1

λiyib⏞ ⏟⏟ ⏞
= 0

+ ∂

∂w

m∑︂
i=1

λi⏞ ⏟⏟ ⏞
= 0

(2.50b)

= w −
m∑︂

i=1
λiyixi = 0, (2.50c)

which implies the following relationship for the solution components w∗ and λ∗:

w∗ def=
m∑︂

i=1
λ∗

i yixi = XYdλ. (2.51)

Subsequently, a partial derivative of L (w, b, λ) with respect to b and set to 0 results in:

∂L (w, b, λ)
∂b

= ∂

∂b

(︃1
2 ∥ w ∥

2
)︃
− ∂

∂b

(︄
m∑︂

i=1
λi

[︂
yi(wTxi + b)

]︂
− 1

)︄
(2.52a)

= ∂

∂b

(︃1
2∥w∥

2
)︃

⏞ ⏟⏟ ⏞
=0

− ∂

∂b

m∑︂
i=1

λiyi⟨w,xi⟩⏞ ⏟⏟ ⏞
=0

− ∂

∂b

m∑︂
i=1

λiyib + ∂

∂b

m∑︂
i=1

λi⏞ ⏟⏟ ⏞
= 0

(2.52b)

=
m∑︂

i=1
yiλi = 0 (2.52c)

implying:
⟨y, λ∗⟩ = 0. (2.53)

Let us take into account a definition of a normal vector w, which was previously intro-
duced in (2.51), and the equality mentioned in (2.53). Inserting these relations back into a
Lagrangian function (2.42), we get:

L (w∗, b∗, λ∗) = 1
2⟨w

∗,w∗⟩ −
m∑︂

i=1
λ∗

i (yi [⟨w∗,xi⟩+ b∗]− 1) (2.54a)

= 1
2∥w

∗∥2 −
m∑︂

i=1
λ∗

i (yi [⟨w∗,xi⟩+ b∗]− 1) (2.54b)

= 1
2∥w

∗∥2 −
m∑︂

i=1
λ∗

i

⎛⎝yi

⎡⎣ m∑︂
j=1

λ∗
jyj⟨xj ,xi⟩+ b∗

⎤⎦− 1

⎞⎠ (2.54c)
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= 1
2∥w

∗∥2 +
m∑︂

i=1
λ∗

i −
m∑︂

i=1

m∑︂
j=1

λ∗
i yiλ

∗
jyj⟨xj ,xi⟩+

m∑︂
i=1

b∗λ∗
i yi⏞ ⏟⏟ ⏞

= 0
from (2.53)

(2.54d)

= 1
2⟨w

∗,w∗⟩+
m∑︂

i=1
λ∗

i −
m∑︂

i=1

m∑︂
j=1

λ∗
i yiλ

∗
jyj⟨xj ,xi⟩ (2.54e)

= 1
2

m∑︂
i=1

m∑︂
j=1

λ∗
i yiλ

∗
jyj⟨xj ,xi⟩⏞ ⏟⏟ ⏞

using definition of w in (2.51)

+
m∑︂

i=1
λ∗

i −
m∑︂

i=1

m∑︂
j=1

λ∗
i yiλ

∗
jyj⟨xj ,xi⟩ (2.54f)

=
m∑︂

i=1
λ∗

i −
1
2

m∑︂
i=1

m∑︂
j=1

λ∗
i yi⟨xi,xj⟩λ∗

jyj . (2.54g)

Recall. We get (2.54g) by minimizing a Lagrangian function (2.42). Putting it together
with constraints λ ≥ 0 and (2.53), we get the following dual optimization problem:

λ∗ = arg max
λ

m∑︂
i=1

λi −
1
2

m∑︂
i=1

m∑︂
j=1

λiyi⟨xi,xj⟩λjyj s.t.

⎧⎨⎩ o ≤ λ,

⟨y, λ⟩ = 0,
(2.55a)

= arg min
λ

1
2

m∑︂
i=1

m∑︂
j=1

λiyi⟨xi,xj⟩λjyj −
m∑︂

i=1
λi s.t.

⎧⎨⎩ o ≤ λ,

⟨y, λ⟩ = 0.
(2.55b)

Finally, we can put a dual formulation (2.55b) into a matrix form such that:

(︂
DSVM

hard

)︂
: λ∗ = arg min

λ

1
2λTQλ− eT λ s.t.

⎧⎨⎩0 ≤ λ,

BEλ = 0,
(2.56)

where
Q = Y T

d XTXYd, BE =
[︂
yT
]︂

. (2.57)

After the dual problem DSVM
hard (2.56) is solved, we need to obtain the original model

parameters w∗ and b∗ using the Lagrange multipliers λ∗. Thus, we will introduce so-called
dual-primal reconstruction formulas. The first one is associated with the normal vector w of
the hyperplane H. It directly arises from stationary condition (2.48a), specifically from the
derivative of the Lagrangian with respects to w (2.50a) such that the reconstruction formula
has a form (2.51).

For reconstruction of the bias b∗, we can effectively use the definition of support vectors.
Let us first analyze the complementary condition (2.48d) from the KKT system to determine
which training samples from Xtrain are actually support vectors. Looking at this condition,
we can see that either the Lagrange multiplier λi or the margin yi (⟨w,xi⟩+ b) has to equal
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CHAPTER 2. MAXIMAL-MARGIN CLASSIFIERS

zero for all indexes i ∈ {1, 2, . . . , m}. If λi = 0 then yi (⟨w,xi⟩+ b) ≥ 1, it follows that
related sample xi lies on or above geometric margin γ (w, b,Xtrain) = 1 and thus it can be a
support vector. This does not really help us.

Let us focus on the second case. If λi > 0 then yi (⟨w,xi⟩+ b) = 1, it means that the
sample xi lies on the margin and implies the sample xi is the support vector, which we denote
as xsv. We can effectively use the definition of support vector xsv and related label ysv for
reconstruction of the bias b∗:

1 = ysv [⟨w∗,xsv⟩+ b∗] , (2.58a)
1

ysv
= ⟨w∗,xsv⟩+ b∗, (2.58b)

b∗ = 1
ysv
− ⟨w∗,xsv⟩, (2.58c)

b∗ = ysv − ⟨w∗,xsv⟩, (assuming ysv ∈ {−1, 1}) (2.58d)

b∗ = ysv − ⟨XYdλ∗,xsv⟩. (2.58e)

In practice, a different reconstruction formula is often employed to determine a bias b∗

associated with a hyperplane H. Instead of considering a particular support vector xSV, we
run calculation over all support vectors so that:

b∗ = 1
card(ISV)

(︂
XT

∗ISV w − yISV

)︂T
eISV , (2.59)

where ISV is the support vector index set, which is defined as follows:

ISV
def= {j : 0 < λj , j = 1, 2, . . . , k }. (2.60)

The cardinality of ISV is denoted as card(ISV) and it represents a number of support vectors.
A matrix X∗ISV denotes a submatrix of a matrix

X = [x1, x2, . . . , xm] (2.61)

with the column indices belonging to ISV. Additionally, yISV and eISV are subvectors of the
vectors y and e, respectively. More detailed discussion about solvability of this dual problem
can be found in [39].
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Chapter 3

Soft-margin support vector machines

We have introduced a theoretical framework of maximal-hard-margin classifiers related to lin-
early separable training samples based on the Vapnik-Chervonenkis dimension in the Chap-
ter 2 so far. However, this is not commonly useful for training models in practical applications,
because real-world samples are not (inherently) linearly separable. This chapter outlines an
approach that overcomes this issue. It employs soft-margin SVMs for training lin-
ear models on data sets that consists of non-linearly separable samples. There
are discussed two variants associated with soft-margin SVMs, specifically l1-loss and l2-loss
SVM in Section 3.1 and Section 3.2, respectively. In Section 3.3, relaxed-bias approaches for
soft-margin SVMs above are introduced.

Recall. SVMs are basically a set of methods, which belong to supervised learning algo-
rithms used for classification, regression, or outlier detection. Note that we focus only on
classification models in this thesis. Considering their underlying structures, we can see SVM
as a single-layer perceptron that finds a learning function that maximizes a geometric margin
between training samples and a separating hyperplane. This implicit capability guarantees
a generalization performance of a model. It was earlier proven using an upper bound of the
Vapnik-Chervonenkis dimension. We can also describe this generalization performance by
means of a particular case of Tikhonov regularization in the following form:

arg min
f∈H

m−1
m∑︂

i=1
V (yi, f (xi))2 + α∥f∥2H. (3.1)

There, H is a hypothesis space of learning functions, ∥·∥H represents a norm on this hypothesis
space, f : Rn → Y denotes a learning function (model) that maps training samples from Xtrain

to a label space Y, and m = card(Xtrain). A loss function is represented by means of V : Y→ Y
and α ∈ R+ serves as a regularization parameter such that:

α = 1
2C

. (3.2)
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CHAPTER 3. SOFT-MARGIN SUPPORT VECTOR MACHINES

Moreover, this theoretical framework provides us with an explanation related to the regu-
larization perspective of the SVM models such that a trade-off between bias and variance is
driven by parameter C ∈ R+.

3.1 Soft-margin l1-loss linear classifiers

A concept of a maximal-margin classifier based on a soft-margin approach was introduced
in 1995 by Cortes and Vapnik [43]. This approach was originally developed as a supervised
binary classifier and is widely known as a soft-margin SVM in ML community. Recall. An
underlying model related to a linear SVM is given by:

hΘ(x) = ⟨Θ0,x⟩+ Θ1 = ⟨w,x⟩+ b̂, (3.3)

where w ̸= 0 is a normal vector of the hyperplane H. A scalar b̂ = b
∥w∥ is called a bias that

determines a displacement of a hyperplane from an origin in the direction of w. Let us denote
b̂ as b for a convincing reading of the following text.

Let us first introduce a training set Xtrain as a set of sample-label pairs, where an ordering
is not mandatory:

Xtrain
def= {(x1, y1) , (x2, y2) , . . . , (xm, ym)}, (3.4)

where {x1, x2, . . . ,xm} ⊂ Rn.

Recall. The separating hyperplane H is defined using the geometric margins, depicted as
dashed lines in Figure 3.1. The margins are determined using the locations of support vectors
(xsv, ysv), which are samples from a training data set Xtrain such that the components of xsv

lie on the these margins. A width between them equals 2
∥w∥ .

Unlike the assumptions on a training data set in the previous chapter, we do not now
consider that the samples are linearly separable. Considering this assumption, a solution
associated with a hard-margin problem (introduced in Section 2.2) could not generally exist.
To sort out the issue related to the non-existence of a solution, we allow some training samples
to be misclassified. For this, we employ a so-called soft-margin approach. The idea is based
on adding an auxiliary (regularization) term:

C
m∑︂

i=1
ξi (3.5)

to the hard-margin formulation,1 and an additional relaxation of the constraints associated

1The hard-margin formulation was introduced in Section 2.2 in a formulation (2.26d).
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Figure 3.1: A case of penalized test sam-
ples: the encircled (test) samples set are
correctly classified. However, they are on
the wrong side of their related margin.
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Figure 3.2: A case of misclassifying
(test) samples: the encircled samples are
not correctly classified.

with geometric margins such that:

(w∗, b∗, ξ∗) = arg min
w, b, ξ

1
2⟨w,w⟩+ C

m∑︂
i=1

ξi s.t.

⎧⎨⎩ yi [⟨w,xi⟩+ b] ≥ 1− ξi,

ξi ≥ 0, i ∈ {1, 2, . . . , m}.
(3.6)

The term C
∑︁m

i=1 ξi regularizes (possible) misclassification errors and restricts a complexity
of a classifier in the sense of overfitting an underlying model, where ξi is a hinge loss function
associated with each sample xi. We define this hinge loss function ξi for a sample xi such
that:

ξi
def= max (0, 1− yi [⟨w,xi⟩ − b]) . (3.7)

Basically, a hinge loss function ξi quantifies an error between a predicted and correct
classification of a sample xi. If the sample xi is correctly classified, a value of a related hinge
loss function ξi equals 0. In order of sample misclassification, a value of ξ is proportional
to the distance between a respective geometric margin and a misclassified sample. We can
observe:

if 0 ≤ ξi ≤ 1 , then the i-th sample lies somewhere between a margin γ = 1 and
separating hyperplane – illustrated in Figure 3.1; a sample is penalized in this case.
If ξi > 1 , then i-th sample is misclassified – depicted in Figure 3.2.

The variable C ∈ R+ is a parameter that penalizes a misclassification error. A higher value
of C increases the importance of minimizing the hinge loss functions ξi and the importance
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CHAPTER 3. SOFT-MARGIN SUPPORT VECTOR MACHINES

of minimizing ∥w∥ at the expense of satisfying the margin constraint for fewer samples. On
the other hand, it causes maximizing ∥w∥, i.e. minimizing the width of a margin, leading to
poor generalization capabilities of a classification model.

A goal is to find a reasonable value of this parameter C such that a resulting model balances
between robustness and complexity – a bias-variance trade-off. The parameter is user-defined
or determined using hyperparameter optimization (HyperOpt) techniques, e.g. grid-search
combined with cross-validation; these techniques are introduced in Chapter 4. Now, let us
mention a few references where authors pointed out an importance of a parameter C:

• “In the support-vector networks algorithm one can control the trade-off between com-
plexity of decision rule and frequency of error by changing the parameter C, ...” [43]

• “The parameter C controls the trade-off between errors of SVM on training data and
margin maximization (C →∞ leads to hard-margin SVM).” [44, p. 82]

• “...the coefficient C affects the trade-off between complexity and proportion of nonsepa-
rable samples and must be selected by the user.” [45, p. 366]

The optimization problem introduced in (3.6) is commonly known as a primal l1-loss
SVM. Let Θ∗

ξ ∈ Rn+m+1 be a solution vector associated with an optimization problem (3.6).
Now, let us introduce a primal l1-loss SVM in a matrix form so that:(︂

PSVM
l1

)︂
: Θ∗

ξ = arg min
Θξ

1
2ΘT

ξ Ql1Θξ + ΘT
ξ q s.t. Bl1Θξ ≤ −h, (3.8)

where

Ql1 =
[︄
In,n On,m+1

Om+1,n Om+1,m+1

]︄
, Bl1 =

[︄
B −Im

Om,m+1 −Im

]︄
, B =

[︂
−YdX

T ,−y
]︂

, (3.9)

and
q =

[︂
0T

m+1, CeT
m

]︂T
, h =

[︂
eT

m, oT
m

]︂T
, Θξ =

[︂
wT , b, ξT

]︂T
. (3.10)

Looking at a primal formulation PSVM
l1 , we can see that inequality constraints take a form,

which consists of an inequality matrix B. Recall. The QP API implemented in PERMON is
designed for box (also lower and upper bounds), and equality constraints. Thus, we need to
transform a primal formulation PSVM

l1 into a QP problem having those types of constraints.
For this, we exploit an approach based on the Lagrange duality, which we effectively used
earlier in Section 2.3.

First, we set up a Lagrangian function for a primal optimization problem in (3.6), where
we consider primal variables as components of a vector Θξ, i.e. w, b, ξ, and vectors of the
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Lagrange multipliers λ and λξ as follows:

Ll1
(︂
w, b, ξ, λ, λξ

)︂
= 1

2∥w∥
2 + C

m∑︂
i=1

ξi −
m∑︂

i=1
λi (yi [⟨w,xi⟩+ b]− 1 + ξi)

−
m∑︂

i=1
λξ

i ξi.

(3.11)

Additionally, we can express the KKT conditions exploiting w∗, b∗, ξ∗, and the vectors of
the Lagrange multipliers λ∗ and λξ∗ so that:

∇w, b, ξ Ll1
(︂
w∗, b∗, ξ∗, λ∗, λξ∗

)︂
= 0, (stacionarity) (3.12a)∑︁m

i=0 (1− ξ∗
i + yi [⟨w∗,xi⟩+ b∗]) ≤ 0,

−ξ∗ ≤ 0,

}︄
(primal feasibility) (3.12b)

λ∗ ≥ o,

λξ∗≥ o,

}︄
(dual feasibility) (3.12c)

∑︁m
i=0 λ∗

i (1− ξ∗
i + yi [⟨w∗,xi⟩+ b∗]) = 0,∑︁m

i=0 λξ∗
i ξ∗

i = 0.

}︄
(complementarity) (3.12d)

In the following text, we determine a dual optimization problem DSVM
l1 corresponding to a

primal problem PSVM
l1 . First, we identify a stationary point of the Lagrangian (3.11) for fixed

λ and λξ. Recall a stationary point of a function is a point, where all partial derivatives of the
function are equal to zero. To begin, we compute a partial derivative of Ll1

(︂
w, b, ξ, λ, λξ

)︂
with respects to w, and set this partial derivative to 0. This yields:

∂Ll1
(︂
w, b, ξ, λ, λξ

)︂
∂w

= ∂

∂w

(︃1
2∥w∥

2
)︃

+ C
∂

∂w

m∑︂
i=1

ξi⏞ ⏟⏟ ⏞
= 0

− ∂

∂w

m∑︂
i=1

λi (yi [⟨w,xi⟩+ b]− 1 + ξi)−
∂

∂w

m∑︂
i=1

λξ
i ξi⏞ ⏟⏟ ⏞

= 0

(3.13a)

= ∂

∂w

(︃1
2∥w∥

2
)︃
− ∂

∂w

m∑︂
i=1

λiyi⟨w,xi⟩ −
∂

∂w

m∑︂
i=1

λiyib⏞ ⏟⏟ ⏞
= 0

+ ∂

∂w

m∑︂
i=1

λi⏞ ⏟⏟ ⏞
= 0

− ∂

∂w

m∑︂
i=1

λiξi⏞ ⏟⏟ ⏞
= 0

(3.13b)

= w −
m∑︂

i=1
λiyixi = 0 (3.13c)
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which implies the following relationship for a normal vector w∗ of a hyperplane H:

w∗ =
m∑︂

i=1
λiyixi = XYdλ∗. (3.14)

Following this, we set the partial derivative of L (w, b, λ) with respect to b to zero, which
results in:

∂Ll1
(︂
w, b, ξ, λ, λξ

)︂
∂b

= ∂

∂b

(︃1
2∥w∥

2
)︃

⏞ ⏟⏟ ⏞
=0

+ C
∂

∂b

m∑︂
i=1

ξi⏞ ⏟⏟ ⏞
= 0

− ∂

∂b

m∑︂
i=1

λi (yi [⟨w,xi⟩+ b]− 1 + ξi)−
∂

∂b

m∑︂
i=1

λξ
i ξi⏞ ⏟⏟ ⏞

= 0

(3.15a)

= ∂

∂b

m∑︂
i=1

λiyi⟨w,xi⟩⏞ ⏟⏟ ⏞
=0

− ∂

∂b

m∑︂
i=1

λiyib + ∂

∂b

m∑︂
i=1

λi⏞ ⏟⏟ ⏞
= 0

− ∂

∂b

m∑︂
i=1

λiξi⏞ ⏟⏟ ⏞
= 0

(3.15b)

=
m∑︂

i=1
yiλi = ⟨y, λ⟩ = 0. (3.15c)

By computing the partial derivative of L (w, b, λ) with respect to ξ and subsequently set
it to zero, we derive:

∂Ll1
(︂
w, b, ξ, λ, λξ

)︂
∂ξ

= ∂

∂ξ

(︃1
2∥w∥

2
)︃

⏞ ⏟⏟ ⏞
=0

+ C
∂

∂ξ

m∑︂
i=1

ξi

− ∂

∂ξ

m∑︂
i=1

λi (yi [⟨w,xi⟩+ b]− 1 + ξi) −
∂

∂ξ

m∑︂
i=1

λξ
i ξi

(3.16a)

= C
∂

∂ξ

m∑︂
i=1

ξi −
∂

∂ξ

m∑︂
i=1

λiyi [⟨w,xi⟩+ b]⏞ ⏟⏟ ⏞
=0

+ ∂

∂ξ

m∑︂
i=1

λi⏞ ⏟⏟ ⏞
=0

− ∂

∂ξ

m∑︂
i=1

λiξi −
∂

∂ξ

m∑︂
i=1

λξ
i ξi

(3.16b)

= Ce− ∂

∂ξ

m∑︂
i=1

λiξi − λξ (3.16c)

= Ce− λ− λξ = 0, (3.16d)

which implies the following relationship for the vector of Lagrange multipliers λξ:

λξ = Ce− λ, (3.17)
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or:
Ce = λξ + λ. (3.18)

To derive the dual functional, we eliminate w, b, and ξ from Ll1
(︂
w, b, ξ, λ, λξ

)︂
using

(3.14), (3.15c), and (3.18) as follows:

Ll1
(︂
w∗, b∗, ξ∗, λ∗, λξ∗

)︂
= 1

2∥w
∗∥2 + C

m∑︂
i=1

ξ∗
i −

m∑︂
i=1

λ∗
i (yi [⟨w∗,xi⟩+ b∗]− 1 + ξ∗

i )

−
m∑︂

i=1
λξ∗

i ξ∗
i

(3.19a)

= 1
2∥w

∗∥2 + C
m∑︂

i=1
ξ∗

i −
m∑︂

i=1
λ∗

i yi [⟨w∗,xi⟩+ b∗] +
m∑︂

i=1
λ∗

i

−
m∑︂

i=1
λ∗

i ξ∗
i −

m∑︂
i=1

λξ∗
i ξ∗

i

(3.19b)

= 1
2∥w

∗∥2 +
m∑︂

i=1

(︂
λ∗

i + λξ∗
i

)︂
⏞ ⏟⏟ ⏞
using (3.18)

ξ∗
i

−
m∑︂

i=1
λ∗

i yi

m∑︂
j=1

λ∗
jyj⟨xj ,xi⟩⏞ ⏟⏟ ⏞

using definition of w in (3.14)

+
m∑︂

i=1
λ∗

i yib
∗ +

m∑︂
i=1

λ∗
i

−
m∑︂

i=1

(︂
λ∗

i + λξ∗
i

)︂
ξ∗

i

(3.19c)

= 1
2⟨w

∗,w∗⟩+
m∑︂

i=1
λ∗

i −
m∑︂

i=1

m∑︂
j=1

λ∗
i yiλ

∗
jyj⟨xj ,xi⟩

−
m∑︂

i=1
λ∗

i yib
∗

⏞ ⏟⏟ ⏞
= 0

from(3.15c)

(3.19d)

=
m∑︂

i=1
λ∗

i −
1
2

m∑︂
i=1

m∑︂
j=1

λ∗
i yi⟨xi,xj⟩λ∗

jyj . (3.19e)

It is important to note that the dual functional is independent of λξ.

Now, we can define constraints for the Lagrange multipliers λ. According to their defini-
tion, a lower bound for the Lagrange multipliers is set to 0, i.e. λ ≥ 0 and λξ ≥ 0. Following
this and (3.18), we can establish an upper bound for λ as follows:

λ
(3.18)= Ce− λξ

(3.12c)
≤ Ce, (3.20)
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an thus:
0 ≤ λ ≤ Ce. (3.21)

The multiplier λ also satisfies the equality constraint arises from (3.15c):

⟨y, λ∗⟩ = 0. (3.22)

Finally, we obtain the following dual optimization problem:

λ∗ = arg max
λ

m∑︂
i=1

λi −
1
2

m∑︂
i=1

m∑︂
j=1

λiyi⟨xi,xj⟩λjyj s.t.

⎧⎨⎩ o ≤ λ ≤ Ce,

⟨y, λ⟩ = 0,
(3.23a)

= arg min
λ

1
2

m∑︂
i=1

m∑︂
j=1

λiyi⟨xi,xj⟩λjyj −
m∑︂

i=1
λi s.t.

⎧⎨⎩ o ≤ λ ≤ Ce,

⟨y, λ⟩ = 0.
(3.23b)

We can put a dual formulation (3.23b) into a matrix form such that:

(︂
DSVM

l1

)︂
: λ∗ = arg min

λ

1
2λTQl1λ− eT λ s.t.

⎧⎨⎩ 0 ≤ λ ≤ Ce,

BEλ = 0,
(3.24)

where:
Ql1 = Y T

d XTXYd, BE =
[︂
yT
]︂

. (3.25)

After a dual problem DSVM
l1 (3.24) is solved,2 we need to obtain primal variables associated

with the parameters of a linear model w∗, and b∗. The normal vector w∗ of hyperplane H

can be determined from (3.14) such that:

w∗ = XYdλ∗. (3.26)

For reconstruction of the bias b, we need first to determine support vectors employing
complementary conditions outlined in (3.12d). Let us recall them:

λi (1− ξi + yi [⟨w,xi⟩+ b]) = 0, i = 1, 2, . . . , m, (3.27a)

λξ
i ξi =

m∑︂
i=1

(C − λi) ξi = 0, i = 1, 2, . . . , m. (3.27b)

Looking at these conditions, we can see that we need to analyze three cases corresponding
to the possible values of the Lagrange multiplier λi:

2Note, the Lagrange multipliers λξ are determined by means of an equation (3.17) using the Lagrange
multipliers λ.

- 36 -



• When λi = 0, we can evaluate the complementary conditions (3.27) as follows:

– a condition (3.27a) is equivalent to (C − 0) ξi = 0 and hence ξi = 0,

– this implies that a condition (3.12b) yields 0 (1− 0− yi [⟨w,xi⟩+ b]) = 0, and then
yi [⟨w,xi⟩+ b] ≥ 1.

From the analysis above, we can conclude that a sample xi is correctly classified and
thus lies on or above a respective geometric margin. Thus, a sample xi associated with
a Lagrange multiplier λi could be a support vector.

• For 0 < λi < C, we obtain:

– a condition (3.27b) is equivalent to (C − λi)⏞ ⏟⏟ ⏞
>0

ξi = 0 and hence ξi = 0,

– this consequently implies that the condition (3.27a) equals
λi (1− 0− yi [⟨w,xi⟩+ b]) = 0, which results in yi [⟨w,xi⟩+ b] = 1.

Now, we can conclude that a sample xi is correctly classified and lies on a respective
geometric margin. Thus, a sample xi associated with a Lagrange multiplier is a support
vector.

• If λi = C:

– a condition (3.27a) is equivalent to (C − C) ξi = 0 and then ξi ≥ 0 that follows
from (3.12b),

– this implies that a condition (3.27a) equals C (1− ξi − yi [⟨w,xi⟩+ b]) = 0, and
then yi [⟨w,xi⟩+ b] = 1− ξi.

Hence yi [⟨w,xi⟩+ b] ≤ 1 and thus the sample xi is either misclassified or lying on the
margin (ξi = 0).

To be really sure that we select a set of support vectors, we consider samples for which
Lagrange multipliers falling within the range from 0 to C, i.e. 0 < λi < C. Considering these
support vectors, we can reconstruct a bias of a hyperplane H using the following reconstruction
formula:

b∗ = 1
card(ISV)

(︂
XT

∗ISV w − yISV

)︂T
eISV , (3.28)

where ISV is the support vector index set, which is defined as follows:

ISV
def= {j : 0 < λj < C, j = 1, 2, . . . , m }. (3.29)

Now, let us analyze a rank of the Hessian matrix Ql1 = Y T
d XTXYd in a dual l1-loss

SVM (3.24). For this, we need to first focus on the Gram matrix XTX. Using the rank-nullity
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theorem, we can obtain the following:

rank
(︂
XTX

)︂
= rank(X), (3.30)

where X is a data matrix. Analyzing this matrix X, we can conclude that:

rank(X) = min{n, Ng}, (3.31)

where Ng is a maximum number of linearly independent training samples, m and n is a number
of training samples and their features, respectively. Thus, a Gram matrix is symmetric positive
semidefinite (SPS). Further, the Hessian Ql1 is also SPS either, since Yd is a diagonal matrix
having −1 and 1 values on a main diagonal. More detailed discussion about solvability of the
primal and dual l1-loss SVMs can be found in [39].

3.2 Soft-margin l2-loss linear classifiers

The Hessian matrix Ql1 associated with a dual formulation of l1-loss SVM (3.24) is SPS in
general, as we mentioned in Section 3.1. It implies that an underlying optimization problem
has a non-unique solution. In this subsection, we modify the primal formulation PSVM

l1 (3.6) in
such way that the Hessian in a dual formulation becomes symmetric positive definite (SPD);
we refer [46, 47] for additional details.

This adjustment involves substituting an l1-loss hinge function by means of an l2-loss
(squared l1-loss) in the objective function so that a primal l1-loss SVM formulation (3.6)
results into the following form:

(w∗, b∗, ξ∗) = arg min
w, b, ξ

1
2⟨w,w⟩+ C

2

m∑︂
i=1

ξ2
i s.t.

⎧⎨⎩ yi (⟨w,xi⟩+ b) ≥ 1− ξi,

i ∈ {1, 2, . . . , m}.
(3.32)

Analyzing the resulting formulation, we can simply observe the term
∑︁m

i=1 ξ2
i ≥ 0, which

quantifies misclassification error, is always non-negative. Therefore, we do not consider ξi ≥ 0
as a constraint. Let us note that the formulation (3.32) is called the primal l2-loss SVM
problem.

Let Θξ ∈ Rm+n+1 be a vector of parameters defined as follows:

Θξ =
[︂
wT , b, ξT

]︂T
. (3.33)

Then, we can rewrite a primal l2-loss SVM (3.32) into a matrix form such that:

(︂
PSVM

l2

)︂
: Θ∗

ξ = arg min
Θξ

1
2ΘT

ξ Ql2Θξ s.t. Bl2Θξ ≤ −h, (3.34)
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where the Hessian matrix Ql2 ∈ R(m+n+1)×(m+n+1) equals:

Ql2 =
[︄
Qn+1,n+1 On+1,m

Om,n+1 CIm,m

]︄
, Qn+1,n+1 =

[︄
In,n On,1

O1,n O1,1

]︄
, (3.35)

a matrix Bl2 ∈ Rm×(m+n+1) is defined as:

Bl2 =
[︂
B −Im

]︂
, B =

[︂
−YdX

T ,−y
]︂

, (3.36)

and vector related to upper bound is given by:

h = em. (3.37)

As in case of the l1-loss SVM, we derive dual formulation. Recall. Using the Lagrange
duality, and, evaluating the KKT conditions, the primal formulation (3.32) transforms into
the dual one. Let λl2 ∈ {R+ ∪ {0}}m a vector of the Lagrange multipliers, where m is a
number of training samples. Then, a Lagrangian function corresponding to (3.32) takes the
following form:

Ll2(w, b, ξ, λ) = 1
2∥w∥

2 + C
m∑︂

i=1
ξ2

i −
m∑︂

i=1
λi (yi [⟨w,xi⟩+ b]− 1 + ξi) (3.38)

and the corresponding KKT conditions are as follows:

∇w, b, ξ Ll1(w∗, b∗, ξ∗, λ∗) = 0, (stacionarity) (3.39a)
m∑︂

i=0
(1− ξ∗

i + yi [⟨w∗,xi⟩+ b∗]) ≤ 0, (primal feasibility) (3.39b)

λ∗ ≥ o, (dual feasibility) (3.39c)
m∑︂

i=0
λ∗

i (1− ξ∗
i + yi [⟨w∗,xi⟩+ b∗]) = 0. (complementarity) (3.39d)

Using the Lagrange duality, and, evaluating the KKT conditions, we can transform a
primal formulation (3.32) into the dual one. First, the partial derivates with respect to w

and b remain same:
∂Ll2 (w, b, ξ, λ)

∂w
= w −

m∑︂
i=1

λiyixi = 0, (3.40)

and
∂Ll2 (w, b, ξ, λ)

∂b
=

m∑︂
i=1

yiλi = ⟨y, λ⟩ = 0. (3.41)

By computing the partial derivative of Ll2 (w, b, λ) with respect to ξ and subsequently
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set it to zero, we derive:

∂Ll2 (w, b, ξ, λ)
∂ξ

= ∂

∂ξ

(︃1
2∥w∥

2
)︃

⏞ ⏟⏟ ⏞
=0

+ ∂

∂ξ

m∑︂
i=1

Cξ2
i

2 − ∂

∂ξ

m∑︂
i=1

λi (yi [⟨w,xi⟩+ b]− 1 + ξi) (3.42a)

=
m∑︂

i=0
Cξi −

∂

∂ξ

m∑︂
i=1

λi (yi [⟨w,xi⟩] + b)⏞ ⏟⏟ ⏞
=0

+ ∂

∂ξ

m∑︂
i=1

λi⏞ ⏟⏟ ⏞
=0

− ∂

∂ξ

m∑︂
i=0

λiξi (3.42b)

=
m∑︂

i=0
Cξi −

m∑︂
i=0

λi = 0 (3.42c)

which implies the following relationship for the vector of Lagrange multipliers λ and ξ:

Cξ − λ = 0. (3.43)

By substituting (3.40), (3.41), and (3.43) back into the Lagrangian function (3.11), we get:

Ll2 (w∗, b∗, ξ∗, λ∗) = 1
2∥w

∗∥2 + C

2

m∑︂
i=0

(ξ∗
i )2 −

m∑︂
i=0

λ∗
i (yi [⟨w∗,xi⟩+ b∗]− 1 + ξ∗

i ) (3.44a)

= 1
2∥w

∗∥2 + C

2

m∑︂
i=0

(ξ∗
i )2 −

m∑︂
i=0

λ∗
i yi [⟨w∗,xi⟩+ b∗] +

m∑︂
i=0

λ∗
i

−
m∑︂

i=0
λ∗

i ξ∗
i

(3.44b)

= 1
2∥w

∗∥2 + C

2

m∑︂
i=1

(ξ∗
i )2 −

m∑︂
i=1

λ∗
i yi

⎡⎣ m∑︂
j=1

λ∗
jyj⟨xj ,xi⟩+ b∗

⎤⎦
+

m∑︂
i=0

λ∗
i −

m∑︂
i=0

λ∗
i ξ∗

i

(3.44c)

= 1
2

m∑︂
i=1

m∑︂
j=1

λ∗
i yiλ

∗
jyj⟨xj ,xi⟩ −

m∑︂
i=1

m∑︂
j=1

λ∗
i yiλ

∗
jyj⟨xj ,xi⟩

−
m∑︂

i=0
λ∗

i yib
∗

⏞ ⏟⏟ ⏞
=0

+
m∑︂

i=0
λ∗

i + C

2

m∑︂
i=0

(ξ∗
i )2 −

m∑︂
i=0

λ∗
i ξ∗

i

(3.44d)

= −1
2

m∑︂
i=1

m∑︂
j=1

λ∗
i yiλ

∗
jyj⟨xj ,xi⟩+

m∑︂
i=0

λ∗
i + 1

2

m∑︂
i=1

Cξ∗
i⏞⏟⏟⏞

=λi

ξ∗
i −

∑︂
i=1

λ∗
i ξ∗

i (3.44e)

= −1
2 (λ∗)T Y T

d XTXYdλ∗ + eT λ∗ − 1
2

m∑︂
i=1

λ∗
i ξ∗

i⏞⏟⏟⏞
=λi/C

(3.44f)

= −1
2 (λ∗)T Y T

d XTXYdλ∗ + eT λ∗ − 1
2C

(λ∗)T λ∗ (3.44g)
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= −1
2 (λ∗)T Qλ + eT λ∗ − 1

2C
(λ∗)T Iλ∗ (3.44h)

= −1
2 (λ∗)T

(︂
Q + C−1I

)︂
λ∗ + eT λ∗. (3.44i)

Recall. We get (3.44i) by minimizing a Lagrangian function (3.38). w.r.t. w, b, ξ. Putting
it together with constraints λ ≥ 0 and (3.41), we get the following dual optimization problem:

λ∗ = arg max
λ

−1
2λT

(︂
Q + C−1I

)︂
λ + eT λ s.t.

⎧⎨⎩ 0 ≤ λ,

BEλ = 0,
(3.45)

which we can rewrite into minimization form such that:

(︂
DSVM

l2

)︂
: λ∗ = arg min

λ

1
2λT

(︂
Q + C−1I

)︂
λ− eT λ s.t.

⎧⎨⎩ 0 ≤ λ,

BEλ = 0,
(3.46)

where:
Q = Y T

d XTXYd, BE =
[︂
yT
]︂

. (3.47)

Since the Hessian is regularized by the matrix C−1I, it avoids linear dependency of columns
also arising from possible multicollinearity of the training samples. Hence, the matrix Q +
C−1I becomes SPD. Practically, the optimization problem and the quality of its solution is
data-driven, i.e. highly depends on the data nature. Therefore, we can say precisely, the
associated optimization problem could be more computationally stable, and a convergence
rate of an underlying solver could be faster, than in a case of the l1-loss SVM. On the other
hand, l1-loss SVM could produce a more robust model in the sense of performance score,
because using linear sum of ξi leads to catching the outliers during a training phase of a
classifier. Then, we adapt the support vector index set ISV such that:

ISV = {i : 0 < αi, i = 1, 2, . . . , m} (3.48)

for a reconstruction formula related to a bias b:

b∗ = 1
card(ISV)

(︂
XT

∗ISV w∗ − yISV

)︂T
eISV . (3.49)

The solution components of w∗ and ξ∗ of the primal problem satisfy:

w∗ = XYdλ∗ and ξ∗ = C−1λ∗, (3.50)

where λ∗ is a unique solution associated with
(︂
DSVM

l2

)︂
(3.46). More detailed discussion about

solvability of the primal and dual l2-loss SVMs can be found in [39].
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3.3 Relaxed-bias classification

A standard approaches soft-margin SVM, specifically l1-loss and l2-loss SVMs introduced
in Section 3.1 respective in Section 3.2, solve a problem of finding a classification model in a
form of the maximal-margin hyperplane:

hΘ(x) = ⟨Θ0,x⟩+ Θ1 = ⟨w,x⟩+ b. (3.51)

In the case of the relaxed-bias classification [48], we do not consider a bias b in a classification
model, however we include it into a problem formulation by means of augmenting the vector
w and each sample xi with an additional dimension so that:

ˆ︁w =
[︄
w

B

]︄
, ˆ︁xi =

[︄
xi

γ

]︄
, (3.52)

where B ∈ R is a variable and γ ∈ R+ is a user defined constant (bias), which is typically set
to 1. Let p ∈ {1, 2} for purposes related to our SVM application, then the problem of finding
a modified hyperplane:

hˆ︁Θ(ˆ︁x) = ⟨ ˆ︁w, ˆ︁x⟩ (3.53)

can be formulated as a constrained optimization problem in the following primal formulation:

(︂ˆ︂w∗,ˆ︂ξ∗
)︂

= arg minˆ︁w, ˆ︁ξ
1
2⟨
ˆ︁w, ˆ︁w⟩ + C

p

m∑︂
i=1

ˆ︂ξp
i s.t.

⎧⎨⎩ yi⟨ ˆ︁w, ˆ︁xi⟩ ≥ 1− ˆ︁ξi,ˆ︁ξi ≥ 0 if p = 1, i ∈ {1, 2, . . . m}.
(3.54)

where ˆ︁ξi = max{0, 1− yi⟨ ˆ︁w, ˆ︁xi⟩} is a hinge loss function associated with augmented samplesˆ︁xi. We can generally say that a minimizer associated with formulation (3.54) corresponds to
an optimal rotation of separating hyperplane ˆ︁H in the origin of one-dimension higher feature
space Rn+1.

If p equals 1, the formulation (3.54) is called a relaxed-bias l1-loss SVM problem; for
p = 2, we talk about relaxed-bias l2-loss SVM. For both p = 1 and p = 2, we can dualize
the primal formulation (3.54) using the Lagrange duality (introduced in previous sections) so
that: (︂

DSVM
l1relaxed

)︂
: λ∗ = arg min

λ

1
2λT ˆ︁Qλ − eT λ s.t. o ≤ λ ≤ Ce, (p = 1) (3.55)

and: (︂
DSVM

l2relaxed

)︂
: λ∗ = arg min

λ

1
2λT

(︂ ˆ︁Q + C−1I
)︂

λ − eT λ s.t. o ≤ λ, (p = 2) (3.56)
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where: ˆ︁Q = Y T
d
ˆ︂XT ˆ︂XYd, (3.57)

and: ˆ︂X = [ˆ︁x1, ˆ︁x2, . . . , ˆ︁xm] . (3.58)

In sense of equivalence of solutions, we can show a connection between the classification models
attained by solving SVM-QP problem arising from the bias and relaxed-bias formulations. Let
us write the separating hyperplane equation in a component-wise form such that:

ˆ︁H := ⟨ ˆ︁w, ˆ︁x⟩ = w1x1 + w2x2 + · · ·+ wmxm⏞ ⏟⏟ ⏞
=⟨w,x⟩

+ Bγ⏞⏟⏟⏞
=:b

. (3.59)

From (3.59), we can easily observe a hyperplane resulting from (3.54), and the hyperplanes
after reconstruction from (3.55), (3.56) are equivalent (in the sense of models) to hyperplanes
associated with the bias formulations (3.6), (3.32), and (3.24), (3.46), respectively.

Regularization perspective in the context of SVM provides a theoretical framework that
gives us an explicit explanation of the relationship between robustness to perturbations un-
certainty set (generalization ability) and regularization of weights in the sense of preventing
overfitting. Mainly, the research on classifier regularization focuses on its effect to bounding
the complexity of a function representing a classification model. Refer to [49], the SVM clas-
sifier asymptotically minimizes an upper bound of expected classification error that converges
to the Bayes risk – arising from a consistency of SVM [50]. Therefore, it implies, the regu-
larization term R (f) bounds a gap between the classification error on the training and test
dataset.

Particularly, relaxed-bias SVM can be considered as a special case of the Tikhonov regu-
larization (3.1), in which, specifically, the hinge loss is used as loss function:

V (yi, f (xi)) = (1− yif (xi))+ , (3.60)

where (s)+ = max{0, s}. Considering R (f) = λ∥f∥2, the regularization problem (3.1) be-
comes:

f∗ = arg min
f∈H

m−1
m∑︂

i=1
(1− yif(xi))2

+ + λ∥f∥2. (3.61)

Then, multiplying by 1
2λ yields:

f∗ = arg min
f∈H

C

2

m∑︂
i=1

(1− yif(xi))2
+ + 1

2∥f∥
2, (3.62)

where C
def= 1

λm and f(xi) := ⟨w,xi⟩. Analysing (3.62), we can observe, the related objective
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function corresponds to objective function of SVM classification problem, namely no-bias l2-
loss SVM. Exploiting similarity of bias and relaxed-bias formulations, we attain equivalence
between standard l2-loss SVM and the Tikhonov regularization as well. For showing a
connection between l1-loss SVM formulations and the regularization point of view, we just
use square root of loss function (3.60):

V −2 (yi, f (xi)) =
√︂

(1− yif (xi))+. (3.63)

Substituting loss function in (3.62) by the function (3.63) yields the standard l1-loss SVM
formulation. Using similar equivalence as in a case of standard and relaxed-bias l2-loss SVM,
we can also explain the regularization perspective straightforwardly. Thus, based on these
observations, we can conclude, the SVM classifiers provide models that take advantages of
implicit regularization properties so that trade-off between robustness and performance of a
model is driven by the parameter C.
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Chapter 4

Performance of classification models

Once a classifier has been trained, it is essential to understand how it represents and generalizes
an associated problem. Recall, overall performance of a classification model is not typically
reported on a training data set itself, because it has been fine-tuned using this data set
and such evaluation approach could not estimate the generalization ability of a model in
a meaningful way. Thus, it is required to test an attained model on a data set, which is
independent of the training samples. This data set is commonly called a test data set, and
we denote it as Xtest in the following text.

A common approach for making a test data set is based on splitting an input data set
typically in ratio 2 : 1 (or 3 : 1), ensuring that labels in these two newly-emerged parts
follow the same probability distribution. Afterwards, a larger part is used for training and
the remaining one for evaluating the performance scores for an attained model.

In this chapter, we introduce a various metrics used for evaluating performance of classifi-
cation models in Section 4.1, and techniques for parameter optimization based on grid-search
combined with cross-validation are then outlined in Section 4.2.

4.1 Model performance metrics

Selecting appropriate evaluation metrics is a key factor for the ML applications, because
monitored qualities of a model varies according to different classification problems, e.g. we
desire that a model balances predictive relevance among classes. In this section, we introduce
a few commonly used performance scores, namely accuracy, precision, sensitivity, specificity,
F1, Intersection over Union (IoU), and Area Under Curve - Receiver Operating Characteristic
(AUC ROC). These metrics are sufficient for most real-world classification problems.
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4.1.1 Confusion matrix

We start with a definition of a confusion matrix at first. Note, this matrix is not a performance
metric itself. However, it gives us the first insights into model quality. The matrix has a
specific table layout Nk×k, where k is a number of classes, and it summarizes a classification
model performance in relation to test, validation sample/label pairs, or another relevant data
set, where labels are known. It features two dimensions: rows are related to samples within a
predicted class, and columns depict samples withing an actual class. We illustrate this concept
for a general binary classification problem in Table 4.1, where k = 2.

Predicted
Class A Class B

Actual
Class A

True
Positive (TP )

False
Positive (FP )

Class B
False
Negative (FN)

True
Negative (TN)

Table 4.1: Illustration: a layout of a confusion matrix associated with a binary classifier.

For a more straightforward analysis of class confusion, i.e. sample mislabeling, a confusion
matrix provides counts for True Positives (TP ), False Positives (FP ), False Negatives (FN),
and True Negatives (TN) in the following manner:

• True Positive samples are those labeled as Class A and predicted as Class A,

• False Positive samples are labeled as Class A and incorrectly predicted as Class B. It
is also known as a false alarm, i.e. a Type I Error,

• False Negatives are associated with samples labeled as Class B and incorrectly pre-
dicted as Class A, referred to as a Type II Error,

• True Negatives are samples labeled as Class B and predicted as Class B.

Let us note that various performance scores are derived from a confusion matrix using its
entries, specifically numbers of TP , FP , FN , and TN . We introduce some of these scores in
the following text.

4.1.2 Accuracy

The ISO standard defines accuracy as a metric that encapsulates both random and systematic
observational errors. Mathematically, it is expressed as a ratio of a number of correctly
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classified samples to a total number of samples:

accuracy def= TP + TN

TP + FP + FN + TN
∗ 100%. (4.1)

Accuracy is a suitable metric for nearly balanced data sets, which are characterized by
a roughly equal distribution of labels across each class. Nonetheless, this metric can be
misleading when we deal with highly imbalanced data sets, i.e. data sets where one class
prevails. Typically, a minority is being a positive class. To demonstrate this point, let us
consider the following example: In a data set, there are 10 samples belonging to Class A
and 90 samples of Class B, and all samples in Class A are being misclassified, it results in a
classification model accuracy of 90%.

To survey this scenario in details, our initial step could involve examining a confusion
matrix. However, when we need a single score to assess model quality, e.g. for running a
parameter optimization (Section 4.2), this approach may not be practical. In such cases,
alternative performance scores come into play. We will briefly discuss some of them in the
upcoming subsection.

4.1.3 Evaluating model performance for imbalanced data sets

Let us begin with the following classification problem: building a classifier for predicting
whether a patient has a serious disease or not. For testing a model performance, we employ
a data set consisting of 100 patients, where 95 of them are healthy, and 5 persons have the
disease. In this section, we introduce commonly used scores for evaluating such an imbalanced
data set, i.e. precision, sensitivity (recall) and harmonic mean of these scores called F1.

In information retrieval, precision is a metric that assesses the relevance of retrieved infor-
mation, and it is defined as the proportion of relevant instances among the retrieved instances.
In the context of our example, precision indicates a proportion of the patients who are diag-
nosed as having the disease and indeed, they have this disease. It is mathematically defined
as follows:

precision def= TP

TP + FP
∗ 100%. (4.2)

Consider a scenario where a model in our example predicts every patient as diseased. In this
case, the precision is 5%.

Another metric, which we can use for evaluating predictive relevance of a model, is sensi-
tivity (recall). In the context of AUC-ROC, discussed in Section 4.1.4, it is referred to True
Positive Rate (TPR) either. Sensitivity is defined as the proportion of relevant retrieved
instances over a total number of relevant instances, which in our example represents a pro-
portion of patients who have the disease and are correctly diagnosed as having the disease.
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We can mathematically express this as:

sensitivity def= TP

TP + FN
∗ 100%. (4.3)

Let us consider the same case as mentioned earlier, where the classifier predicts that every
patient has the disease. In this case, sensitivity equals to 100%.

From the analysis above, we can conclude that precision assesses a model performance in
terms of false positives, while sensitivity measures the performance of the model with respect
to false negatives. This is illustrated in Figure 4.1.

false positivestrue positives

false negatives true negatives

������������ ����� �!� "��

Figure 4.1: This illustration visually represents precision and sensitivity performance scores
related to a classification model. Precision relates to the percentage of observations that
are relevant, while sensitivity pertains to the total number of relevant observations that are
correctly classified. Original image was downloaded from [51]. It was slightly modified for the
purpose of this text.

We often require to have a single score that takes into account both precision and sensi-
tivity for many practical applications. The first idea would be to use arithmetic mean of both
scores; however it could misleads in some situations. Let us illustrate this point by means of
the following example: Consider precision is 5% and sensitivity is 100% from out previous
case. Then, a overall score is 52 .5%.

A more suitable approach would be to use a harmonic mean of precision and sensitivity
as opposed to a arithmetic mean. Mathematically, a harmonic mean can be considered as a
reciprocal of a arithmetic mean of reciprocals of corresponding observations. In the field of
data science, a harmonic mean of sensitivity and precision is commonly referred to F1 and is
defined such that:

F1
def= 2

1
precision + 1

sensitivity
= 2 ∗ precision ∗ sensitivity

precision + sensitivity . (4.4)
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Regarding our example, we obtain F1 = 2∗100∗5
100+5 = 9, 52%. In practical applications, this

score is often normalized rather than expressed as a percentage. If F1 ≤ 0.5, we categorize
a classifier as a “random guess.” It implies that a classifier performs no better than simply
flipping a coin.

4.1.4 Area Under Curve - Receiver Operating Characteristic

A Receiver Operating Characteristic (ROC) curve provides a visual representation related
a diagnosing performance of a binary classifier. It displays a relative tradeoff between true
positive and false positive samples. On the ROC curve, each point corresponds to a specific
decision threshold with a TPR on y-axis and a false positive rate (FPR) on the x-axis as
depicted in Figure 4.2. In addition, FPR is defined as follows:

FPR
def= 1 − specificity = 1− TN

TN + FP
, (4.5)

where specificity (also known as a true negative rate) represents a probability that a negative
sample is being classified as negative. As an ROC curve is constructed based on probability
measurements, an Area Under a Curve (AUC) serves as an indicator of a classifier ability
to effectively identify categories of samples, and is determined as area under ROC curve
(Riemann integral), e.g. using the trapezoidal rule. This basically quantifies a degree of
separability.

(a) A ground true and predicted fire maps. (b) AUC ROC for a predicted fire map.

Figure 4.2: An evaluating performance of a semantic segmentation model used for localizing
wildfires in Alaska regions. This challenge is addressed as a part of a collaborative effort
with researchers from Argonne and Oak Ridge National Laboratories within a broader natural
hazard project [52] employing the PERMON toolbox [17, 40].
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4.1.5 Intersection over Union

Intersection over Union (IoU), also known as the Jaccard’s index, is a metric primarily used
in the computer vision field for evaluating a performance of a segmentation algorithm and
object detection tasks. It measures the accuracy of an overlap between predicted and ground
truth regions, or bounding boxes surrounding the objects in an image scene. Now, let us
denote predicted regions as Xpred, and Xgt represents a ground truth.

��������

������� 

������� 

!�"��#

��������
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"�����
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(a) An illustration of an IoU metric typically used for evaluating image seg-
mentation models and results of object detection tasks.

(b) A perfect object detec-
tion result (IoU=0.95).

(c) A poor object detec-
tion result (IoU=0.45).

Figure 4.3: This example provides a visual representation of an IoU metric, accompanied
by two scenarios related to a perfect and a poor object detection outcomes. To facilitate an
evaluation of these results, a ground truth enclosed within a violet rectangle is used. Addi-
tionally, a detected object is outlined with a blue rectangle. Original images were downloaded
from [53]. We slightly modified them for the purpose of this text.

Then, an IoU score is computed using the following formula:

IoU def= card(Xgt ∩ Xpred)
card(Xgt ∪ Xpred) , (4.6)

which is visualized in Figure 4.3a. For many real-world applications, the IoU score is deter-
mined slightly different. To account for binary image segmentation or an object detection
task, the original formula (4.6) can be adapted using true positives, false positives, and false
negatives such that:

IoU def= TP

TP + FN + FP
. (4.7)
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Note, the IoU score yields values between 0 and 1, where 0 means that predicted and ground
truth regions have no overlap and 1 indicates perfect fit, i.e. regions are identical. In this
text, we consider a results having IoU higher than 0.95 as excellent ones, and a good model
typically has IoU higher than 0.7, an example depicted in Figure 4.3b. Any other scores are
associated with poor results, visualized in Figure 4.3c.

4.2 Parameter optimization

A parameter optimization involves selecting the most suitable parameters for a learning al-
gorithm during its training phase, intending to configure a model to improve its performance
and prevent issues like underfitting or overfitting. In the context of SVMs, we aim to fine-tune
a penalty parameter C to ensure that a model effectively addresses an associated problem and
minimizes misclassification errors. A model performance is typically evaluated on independent
samples, often utilizing a validation data set for this purpose.

4.2.1 Grid search

Figure 4.4: Visualization: fine-tuning hyperpameters using a grid search approach [54].

The traditional approach of performing parameter selection is based on a grid search ap-
proach. It involves an exhaustive search method that explores a predefined parameter set,
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visualized in Figure 4.4. This set typically defines a reasonable region in the parameter space
discretized using a uniform grid. A grid search then trains a model with each combination of
the predefined values and evaluates a performance of a classifier on a held-out validation set.
In practical implementations, a warm start of an underlying solver can significantly reduce
computation time. It is worth mentioning other optimization techniques such as a randomized
search [55] and the Bayesian optimization [56], which fall beyond the scope of this text.

4.2.2 Cross validation

For estimating a generalization process using grid-search, cross-validation techniques are fre-
quently employed. The method called k-fold cross-validation belongs among the most widely
used ones. In this approach, a dataset is randomly divided into k disjoint parts of roughly
equal size. Sequentially, one of these partitions is kept aside as a validation data set for
evaluating a model performance, while the remaining k−1 parts are utilized for training. Af-
terwards, these k performance scores are aggregated and averaged to produce a single score.

Another widely used cross validation technique is called stratified cross validation, see
publications [57, 58] for additional information. The stratification approach is implemented
to prevent the missuse of class distributions so that each fold maintains a similar proportion
of samples in each class, depicted in Figure 4.5. In order to training a classifier on a whole
input data, nested cross-validation [59] is commonly employed for the best parameter setting.

Run 3

Run 2

Run 1

Training Validation

Class A   |  25%

Class B   |  75% 

Figure 4.5: Stratified cross-validation performed on 3 folds.
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Chapter 5

Deterministic solvers

This chapter introduces deterministic QP (Quadratic Programming) solvers, which we employ
in our pipelines for training SVM models; we also outline their modifications and adaptations
to improve the rate of convergence. Specifically, we used these algorithms to solve QP prob-
lems arising from QP-SVM formulations. The efficiency of the optimization algorithms is
necessary to maximize utilization of modern hardware, which allows us to handle large-scale
data sets in training pipelines designed to run on the fastest supercomputers in the world,
e.g. Frontier1 or Summit2 operated by the Oak Ridge National Laboratory.

In this chapter, we will focus on algorithms developed by Prof. Dostál (VSB – TU Ostrava)
such as Modified Proportioning with Reduced Gradient Projection (MPRGP), Semimonotonic
augmented Lagrangian (SMALXE), their variants, or MPPCG developed by Kružík and firstly
introduced in [60].

MPRGP is an efficient algorithm for solving convex QP problems with bound and box
constraints. The theory guarantees R-linear convergence of the MPRGP algorithm for a fixed
step length less than 2

∥A∥ , where A represents a Hessian matrix. However, this step-length
is commonly really small in the case of the SVM problems, because a norm of the Hessian
matrix A is typically large, which results in many expansion steps. First, we investigate a
selection of an optimal fixed step-length used in an expansion step on the convergence of the
MPRGP algorithm in Section 5.5.1, where we explore also the effect of prolongation of this
step length such that is greater than 2

∥A∥ . However, the optimal value of the step-length
can be different in each iteration. To overcome this issue, we introduce adaptive expansion
strategies and study their advantages on publicly available data sets. We compare the results
achieved using the adaptive expansion approaches with those attained using the MPPCG
algorithm (mentioned above) in Section 5.3.

1https://www.olcf.ornl.gov/frontier/
2https://www.olcf.ornl.gov/summit/
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CHAPTER 5. DETERMINISTIC SOLVERS

Since MPRGP and its variants are designed for the box or bound-constrained problems,
they can be used only for solving relaxed-bias approaches related to SVM classification prob-
lems (introduced in Section 3.3). Thus, we introduce the SMALXE algorithm that we use
to train models using the complete QP-SVM formulations (Section 3.1 and Section 3.2), i.e.
with additional homogenized equality constraints in the dual formulations. SMALXE is a
“pass-through” solver taking the case of equality constraints. In Section 5.4, we introduce
two variants of this algorithm: SMALXE-ρ and SMALXE-M. We compare complete and
relaxed-bias approaches for training SVM models on an initial data set for wildfire localiza-
tion.3 The approaches for improving the rate of convergence of SMALXE-type algorithms
based on normalizing equality constraint conclude this chapter.

5.1 Introduction

Performance of ML methods and learned models highly depends on the right data representa-
tion, e.g. using features extraction or selection. Roughly speaking, contemporary research on
ML incorporates two mainstream directions, DNNs and representation learning (RL) based
on conventional techniques. The key advantage of DNNs is incorporating feature selection
inherently so that a series of hidden layers extracts abstract features. It allows the computer
system to build complex concepts out of simpler ones hierarchically. On the other hand, de-
signing a structure of DNNs and, afterwards, understanding resulting models are challenging.
Currently, a general approach does not exist.

2 4 8 16 32 64 128 256 512
visual dictionary size
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F1 (dictionary)
sensitivity (dictionary)
F1 (without feature extraction)
sensitivity (without feature extraction)

Figure 5.1: Oxford IIIT Pet Dataset: dictionary learning using SIFT descriptors (relaxed-
bias l1-loss SVM). Tested on SALOMON cluster (IT4Innovations).

3This application is introduced in Chapter 7 in more details, including description of workflow, large-scale
benchmarks, etc.
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Regarding feature extraction techniques, we study proper data representation using dic-
tionary learning combining Scale-invariant feature transform (SIFT) / Speeded up robust
features (SURF) extractors with vector quantification techniques in case of image processing
in [62, 63], the effect of dictionary size on model performance score is depicted in Figure 5.1.
For time series data, we observe applicability of PCA (Principal Component Analysis) later
in Chapter 7 related to wildfire localization in Alaska.

Data transformation techniques are essential to force solver convergence and model perfor-
mance. In the rest of chapter, we will introduce several active set algorithms, discuss optimal
settings and tuning parameters, and examine the improvements in QP solvers. We effectively
exploit the special structure of the dual QP-SVM problems to improve a convergence rate.
Let us mention that these QP problems are characterized by a large active, one equality
constraint and low precision in the sense of solution related to an optimization problem. As
we mentioned at beginning of this chapter, we consider QP algorithms developed such as
SMALXE, MPRGP [37, 61], their variants, or MPPCG [60].

Note that a QP problem with a box constraint, which arises from a dual relaxed-bias
l1-loss SVM problem:(︂

DSVM
l1relaxed

)︂
: arg min

λ

1
2λT ˆ︁Qλ − eT λ s.t. o ≤ λ ≤ Ce, (5.1)

or a QP problem with bound constraint as a dual relaxed-bias l2-loss SVM problem:(︂
DSVM

l2relaxed

)︂
: arg min

λ

1
2λT

(︂ ˆ︁Q + C−1I
)︂

λ − eT λ s.t. o ≤ λ, (5.2)

can be solved using the MPRGP algorithm developed. This algorithm belongs among active
set based methods and has the rate of convergence given by the bound on the spectrum of the
Hessian matrix. We implemented this algorithm into our software toolbox based on PETSc
called PERMON [40, 17], introduced later in Chapter 6 in more detail.

The integral part of the MPRGP algorithm is the identification of the appropriate active
set. To achieve this, MPRGP performs three types of steps:

1. a classical conjugate gradient (CG) step (solving a linear system),

2. a partial CG step to bound followed by an expansion step (expanding an active set),

3. a proportioning step (reducing an active set).

The theory guarantees R-linear convergence for a fixed step-length in an expansion step,
which is less than 2

∥A∥ , where A represents a Hessian matrix. However, this step-length is
commonly really small in the case of SVM problems, resulting in large number of expansion
steps. It is suitable to find a fixed factor which could prolongate this step in the case of
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our SVM problems, see our paper [64], and then examine an effect of adaptive expansion
step-length computed from the free and reduced gradients, discussed later in this chapter.

If QP problem consists of an additional homogenized equality constraint BEx = o, e.g. a
complete dual l2-loss SVM (earlier introduced in Section 3.2):

(︂
DSVM

l2

)︂
: arg min

λ

1
2λT

(︂
Q + C−1I

)︂
λ− eT λ s.t.

⎧⎨⎩ 0 ≤ λ,

BEλ = 0,
(5.3)

where BE =
[︂
yT
]︂
, we can add a penalized term ρBT

EBE being a part of the Hessian matrix:

Q + C−1I + ρBT
EBE , (5.4)

where ρ ∈ R+
0 , and solve a resulting QP problem using the MPRGP algorithm. Then, the

convergence rate is sensitive to spectral properties of ρBT
EBE , which involves setting the

suitable value of a penalty ρ. Let us note that this penalty ensures sufficient fulfilment of the
equality, i.e. a solution λ belongs KerBE , and should not spoil significantly the conditioning
of the Hessian.

A large penalty guarantees a more accurate fulfilment of this equality constraint, however
the algorithm completely fails on the convergence rate. The spectral properties can be im-
proved by multiplying this equality constraint by means of a transformation matrix T defining
the orhonormalization of rows of BE so that:

(TBE)T TBE = BT
E

(︂
BEB

T
E

)︂−1
BE , (5.5)

which is projector to ImBT
E and the Hessian matrix with more favourable spectrum is then

as follows:
Q + C−1I + ρBT

E

(︂
BEB

T
E

)︂−1
BE . (5.6)

Another approach on how to enforce the equality constraint could be using a projector:

P = I −BT
E

(︂
BEB

T
E

)︂−1
BE (5.7)

onto KerBE , however, due to projections to the feasible set in expansion step performed by
the MPRGP algorithm, it has to be equipped by penalized term ρBT

E

(︂
BEB

T
E

)︂−1
BE so that

the Hessian has the following form:

P
(︂
Q + C−1I

)︂
P + ρBT

E

(︂
BEB

T
E

)︂−1
BE . (5.8)

The SMALXE algorithm eliminates the requirement to set the proper penalty value ρ

and extends the MPRGP algorithm by an outer loop updating the Lagrange multiplier for
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this equality constraint. Both algorithms and their variants are discussed in this chapter and
demonstrated on publicly available benchmarks from the LIBSVM dataset webpage.

5.2 The MPRGP algorithm

Recall that MPRGP represents an efficient algorithm for the solution of convex QP with box
constraints:

arg min
x

f(x) = arg min
x

1
2x

TAx− xTb s.t. l ≤ x ≤ u, (5.9)

where f(x) is the cost function, A ∈ Rn×n is positive semi-definite Hessian, x ∈ Rn is the
solution, b ∈ Rn is the right hand side, l ∈ Rn and u ∈ Rn is the lower respectively the upper
bound.

To describe the algorithm we first have to define a gradient splitting. Let g = Ax− b be
the gradient. Then we can define a component-wise (for j ∈ {1, 2, . . . , n}) gradient splitting
which is computed after each gradient evaluation. The free gradient is defined as:

gf
j =

⎧⎨⎩0 if xj = lj or xj = uj ,

gj otherwise.
(5.10)

The reduced free gradient is:

gr
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if xj = lj or xj = uj ,

min
(︂

xj−lj
α , gj

)︂
if lj < xj < uj and gj > 0,

max
(︂

xj−uj

α , gj

)︂
if lj < xj < uj and gj ≤ 0,

(5.11)

where α ∈ (0, 2∥A∥−1] is used as an appriory chosen fixed step-length in the expansion step.
Effectively, gf is the gradient on the free set and gr is the free gradient that is reduced such
that a step in its opposite direction with the step-length α does not leave the feasible set
Ω = {x ∈ Rn : l ≤ x ≤ u}. A step in either of these directions can expand the active set, but
cannot reduce it.

The chopped gradient is defined as

gc
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if lj < xj < uj ,

min(gj , 0) if xj = lj ,

max(gj , 0) if xj = uj .

(5.12)

A step in the direction opposite of gc may reduce the active set, but cannot expand it.
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The next ingredient is the projection onto the feasible set Ω which is defined as

[PΩ(x)]j = min(uj , max(lj , xj)). (5.13)

Finally, the projected gradient is defined as gP = gf +gc. Its norm decrease is the natural
stopping criterion of the algorithm. These are all the necessary ingredients to summarise
MPRGP in Algorithm 1.

Algorithm 1: MPRGP
Input: A, x0 ∈ Ω, b, Γ > 0, α ∈ (0, 2||A||−1]

1 g = Ax0 − b, p = gf (x0), k = 0
2 while ||gP (xk)|| is not small:
3 if ||gc(xk)||2 ≤ Γ2gr(xk)Tgf (xk):
4 αf = max{αcg : xk − αcgp}
5 αcg = gTp/pTAp

6 if αcg < αf :
7 // CG step
8 xk+1 = xk − αcgp

9 g = g − αcgAp

10 β = gf (xk+1)TAp/pTAp

11 p = gf (xk+1)− βp

12 else:
13 // Expansion step
14 xk+ 1

2 = xk+1 − αfp

15 g = g − αfp

16 xk+1 = PΩ(xk+ 1
2 − αgf (xk+ 1

2 ))
17 g = Axk+1 − b

18 p = gf (xk+1)
19 else:
20 // Proportioning step
21 αcg = gTgc(xk)/gc(xk)TAgc(xk)
22 xk+1 = xk − αcgg

c(xk)
23 g = g − αcgAgc(xk)
24 p = gf (xk+1)
25 k = k + 1

Output: xk
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5.3 Expansion strategies for the MPRGP algorithm

This section briefly summarizes theory introduced in our paper [60] dealing with modifications
of the expansion step in the MPRGP algorithm. The original theory beyond this algorithm
guarantees R-linear convergence for a fixed step length in expansion step such that its value
goes from 0 to 2

∥A∥ . However, this length is typically small in the case of the SVM problems,
because a norm of A is commonly large, which results in many expansion steps.

To reduce the number of expansion steps, we propose two alternatives to the original ex-
pansion. Additionally, we provide a comparison of the various choices for the search direction.
All of these expansion steps perform a partial CG step to the bound or box, they differ in sub-
sequent step employing these adaptive expansion step-lengths and directions. Another idea
could be based performing the full CG step with a subsequent projection onto the feasible
set. Therefore, we propose a projected CG step as another variant of the expansion.

Now, let us analyze the step lengths in a given direction to find the length, for which
decreasing of the cost function is maximal. Recall that our cost function is:

f(x) = 1
2x

TAx− xTb. (5.14)

and the expansion does a step in the gr direction with a fixed step length α ∈ (0, 2||A||−1].
Now, let us assume that a step performs in a direction d, where d is either gr or gf , and no
active component is freed. We want to choose this step length such that the cost function
decreases:

f(x)− f(x− ᾱd) = f(x)− 1
2(x− ᾱd)TA(x− ᾱd) + (x− ᾱd)Tb =

= f(x)− 1
2x

TAx + xTb− 1
2 ᾱ2dTAd + ᾱdTAx− ᾱdTb =

= −1
2 ᾱ2dTAd + ᾱdTg ≥ 0,

and after division by ᾱ > 0:
1
2 ᾱdTAd ≤ dTg. (5.15)

Assuming d is not in the null space of A, we have dTAd > 0 and so we can divide the
inequality by dTAd:

ᾱ ≤ 2dTg

dTAd
. (5.16)

Because d is either free gradient or reduced free gradient, we have:

dTd ≤ dTg ≤ gTg (5.17)
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therefore:
1 ≤ gTg

dTd
, (5.18)

and:
ᾱ ≤ 2dTd

dTAd
≤ 2dTg

dTAd
. (5.19)

We know that:

dTd = ∥d∥2 and dTAd =
⃓⃓⃓
dTAd

⃓⃓⃓
≤ ∥A∥ ∥d∥2 , (5.20)

therefore, using (5.19) we have:

2dTd

dTAd
≥ 2 ∥d∥2

∥A∥ ∥d∥2
= 2 ∥A∥−1 ≥ α, (5.21)

so that α ≤ 2 ∥A∥−1 is a step length ensuring the decrease of the cost function. Furthermore:

2dTg

dTAd
= 2dTg

dTAd
· 1 = 2dTg

dTAd
· d

Td

dTd
= 2dTd

dTAd
· d

Tg

dTd
, (5.22)

which in combination with (5.21) and (5.18) gives:

0 ≤ ᾱ ≤ 2 ∥A∥−1 ≤ 2 ∥A∥−1 dTg

dTd
≤ 2dTg

dTAd
(5.23)

Finally, we can consider the bounds:

0 ≤ ᾱ ≤ 2 ∥A∥−1 dTg

dTd
≤ 2dTg

dTAd
(5.24)

as adaptive step lengths for an expansion step taking into account the actual situation. For
testing purposes, let us consider the following notation:

• fixed ᾱ = αu ∥A∥−1 ,

• optapprox ᾱ = αu ∥A∥−1 dT g
dT d

,

• opt ᾱ = αu
dT g
dT Ad

,

where αu ∈ (0, 2]. In the derivation, we assumed that d is not in the null space of A. However,
if d is in the null space of A we simply do not update α.

Since our goal is to expand the active set faster, it seems reasonable to replace the half step
by the full CG step with a subsequent projection onto the feasible set. To be more specific,
our expansion step becomes

xk+1 = PΩ(xk − αcgp),
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followed by reseting p = gf . Note, that realising the expansion in this way simplifies the
implementation as we can always compute the CG step and then compute the gradient using
CG recurrence when the step was feasible; otherwise, we project the solution onto the feasible
set and recompute the gradient explicitly. Algorithm 2 illustrates the implementation. It
replaces if. . . else block on lines 6–9 in Algorithm 1.

Algorithm 2: Projected CG
1 xk+1 = xk − αcgp
2 if αcg ≤ αf :
3 g = g − αcgAp
4 β = pTAgc/pTAp

5 p = gf − βp

6 else:
7 xk+1 = PΩ(xk+1)
8 g = Axk+1 − b

9 p = gf

5.4 The SMALXE algorithm

In this section, we briefly introduce the SMALXE algorithm, which represents a class of the
Semimonotic Augmented Lagrangian algorithms for the QP problems that involves a linear
equality constraint BEx = cE ; see [37] for further details. If there is no additional constraint,
we talk about the SMALE algorithm, which typically employs conjugate gradients (CG) as
inner solver. If we have an additional lower bound or box constraint, i.e. the QP problem in
the following form:

x∗ = arg min
x

1
2x

TAx− bTx s.t.

⎧⎨⎩ lb ≤ x ≤ ub,

BEx = cE ,
(5.25)

we SMALBE or SMALSE algorithms, respectively. MPRGP is typically used as an inner solver
in these algorithms. In the following text, we will refer the algorithms SMALE, SMALBE,
and SMALSE by a common name SMALXE [41]. Inner solvers use the following stopping
criterium:

∥gP || ≥ min(Mk∥BEx∥, η). (5.26)

SMALXE algorithm has two basic variants, namely SMALXE-ρ and SMALXE-M. It is
recommended in both variants to start with small penalty and increase ρ or reduce M by
factor β if an increase of the Augmented Lagranian is an outer loop is not sufficient, see the
algorithm depicted in Figure 5.2.
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Figure 5.2: SMALXE-M and SMALXE-ρ variants.

Recommended variant is SMALXE-M, as it does not change the Hessian matrix and does
not require recomputation of fixed step-length ᾱ for the expansion. Further improvements
could be achieved by reorthogonalizing rows of BE matrix

5.5 Benchmarks

5.5.1 Optimal fixed expansion step-length

In this section, we investigate a selection of an optimal fixed step-length and study an effect
of prolongation this step length beyond interval

(︁
0, 2∥A∥−1]︁ as well. We earlier published a

conference paper [64] on this topic and, here, we outline one selected result from this paper
that we attained on the Australian data set. The Australian dataset (Australian Credit
Approval) is public available on the LIBSVM dataset webpage [65] and concerns credit card
applications. It contains 690 training samples with 14 features.

In the following experiments, we will focus on l1-loss and l2-loss relaxed-bias SVM, which
we earlier introduced in Section 3.3. For the MPRGP solver, the relative norm used in the
stopping criterion was set to 0.1, αu = {0 : 0.1 : 2.9, 3 : 1 : 10}, C = 1.0. The initial guess is
set just under the upper bound, i.e. each component is set to 1− 100ϵm, where ϵm ≈ 2.2e−16
is the machine precision.
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Figure 5.3: Australian dataset: Number of Hessian multiplications for l1-loss and l2-loss
depends on varying αu. These results were published in our conference paper [64].

The number of the Hessian multiplications related to l1-loss and l2-loss SVMs are de-
picted in Figure 5.3. For l1-loss, we can see, the minimum of Hessian multiplication, 129, is
obtained for αu = 2.7. It is a significant improvement compared to the optimum 195 Hessian
multiplications for ᾱ = 1.9||A||−1 ∈ (0, 2||A||−1]. For l2-loss, the minimum is 96 Hessian
multiplications for αu = 2.5 that is also an improvement compared to the optimum 125 Hes-
sian multiplications for ᾱ = 1.8||A||−1 ∈ (0, 2||A||−1]. We refer our conference paper [64] for
additional details on this topic, including tables reporting number of Hessian multiplication,
other experiments, and graphs.

5.5.2 Optimal adaptive expansion step-length

The optimal value of the step length can be different in each iteration. In this section, we
outline experiments focusing on adaptive expansion strategies, which we earlier introduced in
Section 5.3 and published in [60].

In the following experiments, we train classification models using relaxed-bias l1-loss
approach on the Australian data set, which we mentioned in Section 5.5.1. As in the previous
section, we set the relative tolerance of MPRGP to 0.1 and an initial guess is set under an
upper bound such that each component of x0 equal to 1 − 100ϵm, where ϵm represents the
machine precision. The results are summarized in Figure 5.4, where opt and optapprox being
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prefixed by XY-; X denotes the vector used as the step-direction and Y is the vector used in
the computation of the step-length.
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Figure 5.4: Australian dataset: Comparison of expansion strategies in the term of the
number of the Hessian multiplications depending on αu (Alpha user). These results were
published in our paper [60].

The benchmarks showed that the optimal αu for the fixed strategy is about 1.4. Using
optapprox step length gives similar results to fixed. For most αu the opt strategies outperform
fixed. The drawback of opt is that there are relatively large jumps in the number of Hessian
multiplications depending on αu.

The projcg strategy consistently performed the best or was very close to the best. More-
over, it does not need an estimate of the maximal eigenvalue, nor a user-selected αu. Addi-
tionally, the implementation of the algorithm is simplified. Therefore, we recommend using
the projected CG step in place of the standard fixed step length expansion.

5.5.3 Comparison complete and relaxed-bias classification

This section deals with preliminary results on comparisons of approaches for training SVM
models, specifically employing the complete and relaxed-bias ones. The concepts related to
them, including problem formulations, were earlier introduced in Chapter 3. In the following
experiments, we demonstrate these comparisons on the tasks of training semantic segmen-
tation models associated with wildfires localization. In details, the application of wildfire
localization is introduced later in this thesis in Chapter 7, including motivation, techniques
for data processing, etc.
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#wildfires pixels #background pixels #attributes
training 46, 851 (13.01%) 313, 149 (86.99%) 133
test 28, 351 (11.81%) 211, 649 (88.19%) 133

Table 5.1: Description related to training data set and test one. Proportions of samples in
each category are pointed out as percents.

In this section, we use a data set containing wildfires in the Alaska regions in 2004, their
localization are depicted in Figure 5.5. Note that the results introduced in this section were
earlier published in the following paper [66].

Figure 5.5: Alaska areas burned by wildfires. Red and green squares represent the training
and test data sets, respectively. Wildfires localization are aggregated over 152 days from
May to September 2004. This visualization was created by Zachary Langford and was earlier
published in [66].

To describe regions affected by fire, we consider changes in normalized reflectance over
time so that features corresponding to each pixel are represented by multidimensional time
series related to the 7 spectral bands with an 8-day period. The pixels are then categorized
using boundaries collected from Monitoring Trends in Burn Severity.4 Looking at Table 5.1,

4https://www.mtbs.gov/
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we can see that the whole data set contains 600, 000 pixels, which we split into training and
test ones consisting of 360, 000 and 240, 000 samples, respectively.

loss func. (type)
∑︁

Hessian mult. loss func. (lower better) training time [s]
l1 34622 1.80e5 73.82
l2 51967 2.24e5 112.28

Table 5.2: Solutions related to the complete SVM formulations using SMALXE + MPRGP.
A default stopping condition is used. Results are attained using 64 MPI processes on the
KAROLINA supercomputer. Setting of an inner solver: Γ = 100, a relative tolerance rtol =
1e− 2 and divtol = 1e10 for an outer loop (SMALXE). Penalty C = 1.

We trainted the following semantic segmentation models on the KAROLINA supercom-
puter,5 which is a combination of HPE Apollo 2000 and Apollo 6500 systems used for HPC
workloads such as AI and other data-intensive applications. For training models, we used our
in-house software called PermonSVM – introduced later in this thesis in Chapter 6.

First, we train models using the complete dual SVM formulations having SPS (l1-loss)
and regularized Hessian (l2-loss), introduced in Section 3.1 and Section 3.2, respectively. As
a solver, we employed the SMALXE-M algorithm (default in PERMON).

The approach above divides an optimization problem into two sub-problems such that
equality and bound/box constraints are handled separately, one after another. An outer loop
is performed using the augmented Lagrangians, and a bound or box constrained optimization
problem is computed by means of a QP solver. We used the MPRGP algorithm, which was
earlier introduced in Section 5.2. Computational demands are summarized in Table 5.2.

Further, we train models using the relaxed-bias approaches for both l1-loss and l2-loss
dual SVM formulations, which we introduced earlier in Section 3.3. Recall, these models can
be viewed as solutions related to formulations considered as a special case of the Tikhonov
regularization (3.1) such that a bias term b is relaxed. Moreover, this approach simplifies the
complete SVM formulations and it leads to optimization problems that are computationally
cheaply to solve than the original ones (complete). The results are summarized in Table 5.3.

loss func. (type)
∑︁

Hessian mult. loss func. (lower better) training time [s]
l1 2962 2.28e4 22.67
l2 1025 3.03e4 6.96

Table 5.3: Attained results using 64 MPI processes (KAROLINA). Solver: MPRGP, an
expansion step is performed using the projected CG step, Γ = 100 in proportion criterion, a
relative tolerance was set to 0.1; penalty C = 1.

5https://www.it4i.cz/en/infrastructure/karolina
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Looking at elapsed times in Table 5.2 and Table 5.3, we can see that training a model
is 3.26 times slower using the complete l1-loss formulation (dual) than in case of its relaxed
approach. Nevertheless, we can observe that the value of a loss function is 7.89 times lower
compared to complete and relaxed approaches.6 It is similar to training a model employing
the complete l2-loss formulation (dual) compared to its relaxed approach. A training time
is 16.1 times slower, and a value associated with a loss function is 7.39 times higher for a
complete formulation.

loss func. (type) formulation (type) precision [%] sensitivity [%] F1

l1
complete 82.80 96.18 0.89

relaxed-bias 84.12 94.58 0.89

l2
complete 82.98 95.63 0.89

relaxed-bias 83.58 92.81 0.89

Table 5.4: The best performance scores related to models trained employing the complete
and relaxed-bias SVM formulations (on the test data set).

The performance scores of models trained using complete and relaxed-bias formulations
are summarized in Table 5.4. Comparing them, we can see that they do not significantly differ;
however, a true positive rate (sensitivity) is slightly higher for the complete formulations. It
means that models identify fire occurrences (true positives) better than the ones with a relaxed
bias at the cost of decreasing precision, i.e. a false positive rate. Overall performance scores
measured by F1 score (a harmonic mean of precision and sensitivity) are the same for both
relaxed-bias and complete models, see Chapter 4 for further information about evaluating
performance scores of classification models.

5.5.4 SMALXE performance improvements

In previous section, we introduced preliminary results on comparison complete and relaxed-bias
formulations for training classification models of SVM type, which we published in a confer-
ence paper [66]. In those experiments, we just focused on model quality not on effectiveness of
training process itself (in the sense of convergence rate). In the following text, we introduce
essential ideas to accelerate training processes, based on normalization equality constraint
BE =

[︂
yT
]︂

and, additionally, employing projector to KeryT .
The presented results were computed in Octave on the small public available data set Heart

from the LIBSVM collection [65]. The Heart dataset is based on data from the Cleveland
Clinic Foundation. The samples belong to two classes: the presence or absence of heart
disease. It contains 270 training samples with 13 features.

6Recall. The loss function quantifies misclassification error.
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In the following experiments, we set penalty ρ = ∥A∥, A = Q + C−1I, misclassification
penalty C = 1, an user defined αu equals 1. We explore an effect of initial guess on convergence
rate; we study two cases x0 = max(e, l) and x0 = l, where represents lower bound. The
results attained without any additional normalization of BE or the projector are summarized
in Table 5.5.

Variant # Exp. type # Out # CG # Exp # Prop # Hess. mult.
SMALSE-M fixed 3 / 1 143 / 118 72 / 61 2 / 1 289 / 241
SMALSE-ρ fixed 4 / 1 154 / 118 72 / 61 2 / 1 300 / 241

Table 5.5: SMALXE and MPRGP convergence (l2-loss SVM with equality) for Heart
dataset: the Hessian matrix is A + ρyyT , ρ = ∥A∥, αu = 1, x0 = max(e, l) / x0 = l,
and C = 1.

Significant improvement is achieved by normalizing y, i.e. a vector defining an equality
constraint BE , so that the penalized term is the projector to Imy. The condition number of
the Hessian matrix (determinating the rate of convergence) is reduced from 89, 465 to 929.44,
i.e. by factor almost 97. The results are presented in Table 5.6.

Variant # Exp. type # Out # CG # Exp # Prop # Hess. mult.
SMALSE-M fixed 4 / 1 98 / 72 49 / 49 2 / 1 198 / 171
SMALSE-ρ fixed 4 / 1 105 / 72 51 / 49 1 / 1 208 / 171

Table 5.6: SMALXE and MPRGP convergence (l2-loss SVM with equality) for Heart
dataset: the Hessian matrix is A + ρynormyT

norm, ρ = ∥A∥, αu = 1, x0 = max(e, l) /
x0 = l, and C = 1.

Next significant improvement consists in employing the projector to Ker yT , where the
condition number of the Hessian matrix is 327.41, i.e. further reduction by factor almost 3.
The results are outlined in Table 5.7.

Variant # Exp. type # Out # CG # Exp # Prop # Hess. mult.
SMALSE-M fixed 3 / 1 55 / 53 41 / 40 1 / 1 138 / 134
SMALSE-ρ fixed 4 / 1 113 / 53 65 / 40 1 / 1 244 / 134

Table 5.7: SMALXE and MPRGP convergence (l2-loss SVM with equality) for Heart
dataset: the Hessian matrix is PAP + ρynormyT

norm, ρ = ∥A∥, αu = 1, x0 = max(e, l)
/ x0 = l, and C = 1.

Distribution of eigenvalues for the Hessian matrices are depicted in Figure 5.6, Figure 5.7,
Figure 5.8.
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Figure 5.6: Eigenvalues of the Hessian A + ρyyT , C = 1.

Figure 5.7: Eigenvalues for A + ρynormyT
norm for Heart dataset, C = 1.
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Figure 5.8: Eigenvalues for PAP + ρynormyT
norm for Heart dataset, C = 1.
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Chapter 6

PermonSVM: SVM implementation on
top of PETSc

This chapter introduces scalable training SVM models implemented in PermonSVM, which is
written on the top of the PETSc framework and the PERMON toolbox; the name PERMON
stands for Parallel, Efficient, Robust, Modular, Object-oriented, Numerical. In the following
text, we will introduce a basic functionality of PermonSVM and briefly comment on its scal-
ability performance in Section 6.1. An efficient data loading using an HDF5 file format is
mentioned in Section 6.2, where we also describe a structure of this file format in a nutshell.
Two showcases of using PermonSVM API for C programming language are then demonstrated
in Section 6.3.

Let us mention that the development of the PermonSVM module is an essential part of
this thesis. You can see the contribution statistics on the GitHub site https://github.com

/permon/permonsvm/graphs/contributors.

6.1 Introduction

PermonSVM package [17] is a part of the PERMON toolbox designed for usage in a massively
parallel distributed environment containing hundreds of computational cores. Technically, it
is an extension of the core PERMON package called PermonQP [40], from which it inherits
basic data structures, initialization routines, build system, and utilizes computational and QP
transformation routines, e.g. normalization of an objective function, dualization, etc.

Programmatically, a core functionality of the PERMON toolbox is written on the top of
the PETSc framework [19, 67], follows the same design and coding style, making it easy-to-use
for anyone familiar with PETSc. It is usable on all main operating systems and architectures
consisting from smartphones through laptops to high-end supercomputers. It also supports
computation on graphic cards (GPUs) [68] through CUDA [69] for GPUs manufactured by
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NVidia1, HIP [70] for AMD GPUs2 or OpenCL [71], as well as hybrid MPI-GPU parallelism.
A current version of PermonSVM (3.20) has the following features:

• distributed parallel (through MPI) I/O operations for formats such as:

– SVMLight,

– HDF5 - mentioned in Section 6.2,

– PETSc binary file format,

• four problem formulations of classification problems such as the complete l1-loss and l2-
loss SVM introduced in Chapter 2 respective in Chapter 3, and relaxed-bias formulations
introduced in Section 3.3,

• two types of parallel cross-validation, namely k-fold and stratified k-fold cross-validation,

• a probability model based on Platt’s scalling technique.

The resulting QP-SVM problem with the implicitly represented Hessian, i.e. a matrix
XTX is not set up, is solved by PermonQP. The PermonQP package implements the QP
algorithms such as MPRGP and SMAXE [37, 61, 41], which are developed and optimized by
Prof. Dostál’s group at the Department of Applied Mathematics, VŠB – Technical University
of Ostrava. The effect of variants of parameters setting for these algorithm, and data transfor-
mations on the speed of model training is outlined in ??. Developing and optimizing these QP
algorithms is another integral part of this thesis. This includes ingredients associated with an
optimal initial guess, adaptive expansion steps, rand variants of the SMALXE algorithm such
as SMALXE-M and SMALSE-ρ; you can find more information about these approaches in
Chapter 5. The scalability of these algorithms and using PETSc became the main reasons for
fruitful collaboration with world-leading research institutes, namely Argonne and Oak Ridge
National Laboratories (USA), aimed at wildfires localization in Alaska, which is mentioned
in Chapter 7.

Unlike standard ML libraries like scikit-learn [27], the PERMON toolbox provides interface
functions to change underlying QP-SVM solver, monitoring performance scores simultaneously
on training and test data sets, and tweaking the algorithms. Contemporary SVM solvers
are commonly limited up to tens of thousands of samples in order to solve complete dual
formulation. PermonSVM goes far beyond that since it has no intrinsic limitations imposed
by a single node memory.

1https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
2https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
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The largest full dual problem successfully solved using PermonSVM was the benchmark of
suspicious URL prediction [18] with more than 1.6 million training samples and over 3 million
features. The related dataset is slightly unbalanced with a ratio of classes 1 : 2, approximately.
We report the best-achieved scores3 on a test dataset in Table 6.1.

Accuracy Precision Sensitivity F1

Suspicious URL prediction 96.41% 96.25% 93.16% 94.68%

Table 6.1: Attained the performance scores of a classification model on a test data set
trained employing a full dual l2-loss SVM formulation on the URL data set.
Solver: MPRGP/SMALXE (default settings), C = 1e− 5.

The underlying MPRGP/SMALXE solver effectively scales up to 144 cores, depicted in
Figure 6.1. That makes PermonSVM a unique machine learning library.
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Figure 6.1: URL dataset, dual QP-SVM (l2-loss), C = 1e−5, MPRGP strong parallel
scalability. Tested on BARBORA cluster (IT4Innovations). Training times for each case are
summarized in Table 6.2.

#cores 2 4 9 18 36 72 108 144 180 216
training time (s) 5471 2912 1433 816 510 272 243 211 219 330

Table 6.2: Training times of a classification models (a full dual l2-loss SVM) on a different
number of cores. Solver: MPRGP/SMALXE (default settings), C = 1e− 5.

3Recall. MPRGP/SMALXE are designed as deterministic solvers. However, floating point operations such
as addition and multiplication are not associative. Thus, running training models on different numbers of cores
gives us slightly different performance scores of models.
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Our libraries are developed as an open-source project under the BSD 2-Clause Licence.
We are grateful for the success that PermonSVM as well as the whole PERMON libraries are
incorporated as external software associated with the PETSc framework, see Figure 6.2.

Figure 6.2: PermonSVM and PermonQP are mentioned as external software libraries, which
use PETSc. On-line available on the following PETSc webpages https://petsc.org/rele
ase/#toolkits-libraries-that-use-petsc.
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6.2 Parallel data loading

This section briefly introduces and provides short comments on the HDF5 file format, which
is currently supported in the PETSc framework. Our tool PermonSVM uses it mainly for
parallel I/O operations for dense and sparse samples stored as matrices; note that labels are
then stored as a vector.

In the scientific community and industry, HDF5 is widely used for supercomputing or ML
applications and is designed for keeping and organizing large volumes of data in N-dimensional
arrays. The National Center for Supercomputing Applications developed it at the University
of Illinois and is currently maintained by the HDF Group. This is a non-profit organization
which ensures the continued development of the HDF5 file format and accessibility of data
stored in HDF. The HDF5 format is based on two major types of objects:

• datasets represented by multidimensional data array,

• groups are container structures which can hold other groups or data arrays.

Metadata (light data) is then stored as attributes (user-defined and named) attached to
datasets or groups. Resources in an HDF5 file can be accessed using POSIX-like syntax,
such as /group1/group2/dataset. The great advantage of this file format is efficient parallel
scalable I/O operations using MPI-IO. This is the main reason why we chose it for our
ML applications, e.g. wildfires localization in Alaska introduced in Chapter 7. Moreover, it
provides performance similar to that of employing loaders for the PETSc binary files. However,
they are more flexible for other ML workflows or frameworks, e.g. PyTorch through the custom
Dataset implementation, see https://pytorch.org/vision/stable/datasets.html.

I initially implemented a loader supporting the HDF5 format in PermonSVM during my
research stay at the University of Edinburgh in 2018 (from February to May). After my return
to the Czech Republic, Václav Hapla helped me to port this implementation to the PETSc
framework [72, 73].

The new loader functionality was done for loading the HDF5 files having a structure of
the MATLAB file (.mat) version 7.3 for sparse and, after a while, dense matrices. These
MATLAB files are the HDF5 favoured file format. We mentioned it in the official PETSc
reference manual and you can find a more related information on-line on the following PETSc
webpages https://petsc.org/release/manualpages/Mat/MatLoad/, where you can also
find a manual page for matrix loaders implemented in the PETSc framework.
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6.3 Application programming interface

PERMON and PermonSVM are designed to use the same coding style as PETSc, as men-
tioned earlier in this chapter. This section introduces two typical showcases of PermonSVM
using API for C programming language. The first illustrates a fundamental functionality for
programming a classifier that predicts sample categories (a hard classifier); this simple pro-
gram is in Code 6.1. The second one is presented in Code 6.2, which demonstrates a program
of a probability classifier.
MPI_comm comm = PETSC_COMM_WORLD ;
SVM svm;
PetscViewer v;

char f_train [ PETSC_MAX_PATH_LEN ] = "url.h5";
char f_test [ PETSC_MAX_PATH_LEN ] = "url.t.h5";

PetscCall ( SVMCreate (comm ,& svm) );
PetscCall ( SVMSetType (svm , SVM_BINARY ) ); /* Binary classifier */
PetscCall ( SVMSetFromOptions (svm) );

PetscCall ( PetscViewerHDF5Open (comm ,f_train , FILE_MODE_READ ,&v) );
PetscCall ( SVMLoadTrainingDataset (svm , viewer ) );
PetscCall ( PetscViewerDestroy (&v) );

PetscCall ( PetscViewerHDF5Open (comm ,f_test , FILE_MODE_READ ,&v) );
PetscCall ( SVMLoadTestDataset (svm ,v) );
PetscCall ( PetscViewerDestroy (&v) );

PetscCall ( SVMSetHyperOpt (svm , PETSC_TRUE ) );
PetscCall ( SVMSetNfolds (svm ,3) );

PetscCall ( SVMTrain (svm) );
PetscCall ( SVMTest (svm) );

PetscCall ( SVMDestroy (& svm) );

Code 6.1: Showcase of using PermonSVM API for training a binary classifier of SVM type.

One of the powerful features of the PETSc framework is a mechanism for runtime op-
tions. It enables users to modify the routine parameters and object options at runtime,
making it desirable for many academic and industry applications. The PERMON and also
PermonSVM inherit this functionality from the PETSc framework. In the case of Per-
monSVM, a user can set up for example a type of loss function, e.g. -svm_loss_type L2,
set problem type such as a complete (introduced in Section 3.1) or relaxed-bias (intro-
duced in Section 3.3) using -svm_binary_mod 1, i.e. a complete problem formulation, or
set misclassification penalty C using -svm_C, setting up and others. Programmatically,
the setting options for the SVM object and all inner objects, such as QPS or QPC, are
called using a function called SVMSetFromOptions. You can find other examples in the
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README in the PermonSVM GitHub repository, available on-line on the following link
https://github.com/permon/permonsvm/blob/master/README.md.
MPI_comm comm = PETSC_COMM_WORLD ;
SVM svm;
PetscViewer v;

char f_train [ PETSC_MAX_PATH_LEN ] = "url.h5";
char f_test [ PETSC_MAX_PATH_LEN ] = "url.t.h5";

PetscCall ( SVMCreate (comm ,& svm) );
PetscCall ( SVMSetType (svm , SVM_PROBABILITY ) ); /* Probability model */
PetscCall ( SVMSetFromOptions (svm) );

PetscCall ( PetscViewerHDF5Open (comm ,f_train , FILE_MODE_READ ,&v) );
PetscCall ( SVMLoadTrainingDataset (svm , viewer ) );
PetscCall ( PetscViewerDestroy (&v) );

PetscCall ( PetscViewerHDF5Open (comm ,f_train , FILE_MODE_READ ,&v) );
PetscCall ( SVMLoadCalibrationDataset (svm , viewer ) );
PetscCall ( PetscViewerDestroy (&v) );

PetscCall ( PetscViewerHDF5Open (comm ,f_test , FILE_MODE_READ ,&v) );
PetscCall ( SVMLoadTestDataset (svm ,v) );
PetscCall ( PetscViewerDestroy (&v) );

PetscCall ( SVMSetHyperOpt (svm , PETSC_TRUE ) );
PetscCall ( SVMSetNfolds (svm ,3) );

PetscCall ( SVMTrain (svm) );
PetscCall ( SVMTest (svm) );

PetscCall ( SVMDestroy (& svm) );

Code 6.2: Showcase of using PermonSVM API for training a probabilistic classifier.
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Chapter 7

Wildfires localization in Alaska

Global climate change is increasing the frequency and intensity of ecological dis-
turbance. This is particularly true in high latitudes. The scientists from the US
space agency NASA in the ABoVE project1 have long observed that these changes
affect the frequency and intensity of natural disasters in the northern regions of
Alaska. Wildfires are one important source of disturbance, and can significantly
affect forest carbon balance. Despite their importance, it can be difficult to accu-
rately quantify the effects of wildfire in places such as boreal forests that are far
from human habitation and infrastructure. Data from remote sensing platforms
and observatory networks can be of great use of this task, however these data sets
can be vast, and analyzing them can require powerful computing resources and tools
that are designed to fully utilize them. Text source: [66].

In this chapter, we will introduce a joint work with world-leading research institutes, aimed
at the identification of natural hazards by means of employing remote sensing and ML tech-
niques. Specifically, we focus on training semantic segmentation models using spatio-temporal
satellite data sets. The main target is developing models for identifying and localizing wild-
fires in the boreal forests in Arctic regions in Alaska – an example is depicted on the next page
in Figure 7.1. As the PERMON team, we cooperate on this application with the Argonne
National Laboratory2 (USA) represented by Dr Richard Mills,3 who is also a co-supervisor of
this thesis, and Oak Ridge National Laboratory4 (USA), represented by Dr Jitendra Kumar5

and (formerly) Dr Zachary Langford6 (now at Databricks, Inc. at the time of this doctoral
thesis submission).

1https://above.nasa.gov
2https://www.anl.gov
3https://www.anl.gov/profile/richard-tran-mills
4https://www.ornl.gov
5https://www.ornl.gov/staff-profile/jitendra-kumar
6https://langfordzl.github.io
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Figure 7.1: On August 14, 2005, Terra satellite (operated by NASA) captured this image of
wildfires raging across the width of Alaska using the Moderate Resolution Imaging Spectro-
radiometer (MODIS) instrument. Smoke from scores of fires (marked in red) filled the state
broad central valley and poured out to sea. More than a hundred fires were burning across
the state as of August 14. This image was downloaded from the NASA websites [74] using
the web archive service (https://web.archive.org). A caption of this image was slightly
modified.

We have presented our results at the premier international conferences, namely: the AGU
Annual Meeting (USA), the IALE North America Annual Meeting (USA), the IEEE Interna-
tional Conference on Data Mining (USA), the SIAM Conference on Computational Science
and Engineering (NL). As an author of this thesis, I gave an invited talk at the Argonne
National Laboratory. In this chapter, we summarize main highlights of our work, approaches,
and results. Most of them were presented in the last conferences and talks in 2023.
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7.1 Motivation

During our collaboration, we focus on efforts that are primarily motivated by using the PETSc
framework [19, 67] and the PERMON extension called PermonSVM, which we earlier intro-
duced in Chapter 6. This helps us to build an ML tool, which can run on modern, distributed
memory parallel, GPU-accelerated HPC architectures [68]. Then, we are able to train ML
models across a cluster or a supercomputer with many nodes, and nodes that employ GPUs to
deliver most of their computational power, and scale to very large data sets. A parallel SVM
implemented in PermonSVM enables us to train models on large remote sensing data sets,
which is originally “ultra-scale,” for automated identification of areas burned by wildfires.

Figure 7.2: Visualization of aggregated wildfire localization over 2005 in Alaska and the
continental USA using Monitoring Trends in Burn Severity (MTBS) product. Source: the
visualization was generated employing our in-house software for natural hazards based on ML
techniques [52].

Recall: Wildfires are a type of disturbance that can significantly affect forest carbon
balance, change ecosystem composition, and increase the chances of further burning in subse-
quent years. Despite their importance, no one is synoptically mapping all fires across North
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America. The Monitoring Trends in Burn Severity (MTBS) product [75] only maps fires over
1, 000 acres in the Western US and over 500 acres in the East, see visualization of aggregated
localization of wildfires over 2005 in Figure 7.2 (on the previous page). However, small fires
are the most frequent and taken together with a larger ones may be the most important. Pro-
ducing MTBS involves intensive human labour and is about 2 years behind. Therefore, using
ML models could automate wildfire identification and additionally provide more complete
coverage.

One of the real reasons why we need GPU-enabled, distributed-memory parallel machine
learning tools arises from the nature of remote sensing data: increasing abundance, fidelity,
and richness of high-resolution spatio-temporal data sets from observatory networks and re-
mote sensing platforms also pose true “big data” possibilities and challenges, especially when
combined with Earth System Model (ESM) outputs. Exascale Earth ESM simulations hold the
potential for achieving “ultra-high” resolution and process representation combined with an
increase in data volume, e.g. high-res CESM simulations on Sunway TaihuLight supercom-
puter7 produced 360 terabytes (TB) of output [76]. The Google Earth Engine platform [22]
offers access to a repository of over 50 petabytes (PB) of satellite data available to analysis.
Compared to large language models, the GPT-4 model [14] was trained on 45 TB of data
volume.

Figure 7.3: Epoch scaling for CosmoFlow deep learning benchmark. This graph was adopted
from Farrell et al. 2021, “MLPerf HPC: A Holistic Benchmark Suite for Scientific Machine
Learning on HPC Systems” [77].

7https://en.wikipedia.org/wiki/Sunway_TaihuLight
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Figure 7.4: A conceptual diagram illustrating the separation between supported GPU pro-
gramming models for user code and the PETSc backends. An image source: R. T. Mills, et
al. Toward performance-portable PETSc for GPU-based exascale systems [68].

Existing tools are generally not designed to scale to such data set sizes and typically provide
shared-memory task-level parallelism, or the level of high-performance orchestration, which
is based on running multiple container instances of an application, e.g. using Kubernetes.8

Distributed memory approaches are usually “data-parallel” in the case of TensorFlow [78]
and PyTorch [79] frameworks. This means that a model is replicated across many nodes,
training samples are assigned to nodes, and training occurs using a local batch. Batch size
limitations could be problematic, see Figure 7.3. Therefore, “extremely” large models using
data sets in order of peta bytes could not be effective to train such models using widely-used
frameworks for deep learning mentioned above, since they do not provide an infrastructure
for model parallelism – major effort would be implement this mechanism.

So, we have ended up adopting a classical ML approaches. We have chosen SVM models,
because it seems to work well enough for wildfire localization. The second reason is really fast
prediction of wildfire localization, which is basically done using matrix-vector multiplication.
Since SVM is basically simple model that are considered as a single layer perceptron, the data

8https://kubernetes.io
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must be transformed using feature engineering approaches. These approaches are discussed
later in this text in Section 7.2.

Thus, we decided to build our ML tools (including PERMON and PermonSVM) on the
top of the PETSc framework. PETSc provides several building blocks useful for ML: high-
performance linear algebra, advanced numerical optimization methods, ODE integrators, etc.
It is designed for parallel scalability, and has been used in many groundbreaking supercom-
puter simulations including five that were awarded Gordon Bell Prizes, you can see list of
awards won by PETSc or its user on the following page https://petsc.org/release/misc

ellaneous/prizes/. In recent years, PETSc has added robust support for GPU-accelerated
architectures. It is simple to use them by employing the appropriate GPU back-ends in
PETSc, see Figure 7.4 on the previous page.
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7.2 Data processing

Since we investigate the abilities of standard ML models, it is necessary to (reasonably)
represent data using feature extraction approaches. Extracting significant features from input
data, which are multispectral satellite images in our case, is an essential part of data analysis.
The analysis also includes inspection of relevant transformations of data into so-called latent
spaces, which leads to an optimization in a change of basis, and this transformation appears
as a projector of a specific type in a problem formulation.

To obtain efficiently the satellite data, we have developed software in Python using Google
Cloud and Google Earth Engine services for streaming and downloading data – graphical
user interface of this tool is depicted in Figure 7.5. Equipped with a user-friendly graphical
interface for selecting region(s) of interest (ROI), the software provides an visualization of
accumulated wildfire localization over a specified period. It simplifies us manipulation with
fire map collections and drawings of bounding box/boxes that are used to define ROI(s)
for downloading satellite data and fire maps from Google Earth Engine. Software supports
European Space Agency (ESA) FireCCI9 and MTBS fire map collections. We just tested the
last one so far.

After downloading satellite images to local storage, we need to clean them first. In practice,
this means removing the parts of the image parts that have missing values – note that this
could be due to factors such as sensor errors, cloud cover at time of acquisition, etc. These
areas are labelled by a value 6 in the MTBS collection. In the case of automated monitoring
of wildfires, we also consider temporal information in addition to spatial information. In other
words, each pixel is represented as a multidimensional time series. These time series describe
the evolution of reflectance represented by the electromagnetic spectrum, the evolution of
plant health using vegetation indices such as Normalized Difference Vegetation Index (NDVI)
or Enhanced Vegetation Index (EVI), and temperature changes over a given period. The
multispectral images are taken from MODIS instrument carried by Terra satellite10, where
one pixel corresponds to a square area of the size 500× 500 m2 (61.77 acres).

Recall. We train an image segmentation model using classical (standard) ML techniques.
Thus, it is necessary to perform time series standardization and the so-called data trans-
formation needed to extract some meaningful features. These transformations may include
applying filtering techniques such as Savitzky-Golay or dimension reduction techniques. So
far, we have tested dimension reduction using PCA (Principal Component Analysis) in up-
coming experiments.

9https://climate.esa.int/en/projects/fire/about/
10https://terra.nasa.gov
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(a) Dialog window for FireCCI data. (b) Dialog window for MTBS data.

(c) Dialog window for region selection.

Figure 7.5: Graphical user interface of software for streaming and downloading data based
on Google Cloud and Google Earth Engine.
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7.3 Benchmarks

(a) (b)

Figure 7.6: Alaska wildfire season in 2004 (aggregated data), area centered at N65◦ 44′

55.259” E149◦ 53′ 50.859”, area size ≈ 722, 500 km2, projection EPSG3338. Image size
1918 x 1780 (space domain).

This section presents the results of automated wildfire localization using semantic segmen-
tation models. Recall. Semantic segmentation is a computer vision task associated with
supervised image classification at a pixel level. It means that every pixel is assigned to its
own category, creating a segmentation mask. A fire map represents this mask in our case.

Current state-of-the-art approaches are based on neural networks of U-Net type architec-
tures processing RGB images – typically satellite images in the visible spectrum of light or
aerial photos. There, the pre-trained encoder in U-Net extracts features and patterns from
spatial images, and the decoder projects these lower-resolution features onto the pixel space
in higher resolution to get a dense classification. The architecture associated with this type
of neural network based on processing RGB images is discussed in more detail in [80].

In the following text, we will introduce different approaches based on employing standard
classification models of the SVM type used for wildfire localization on multispectral satellite
data including surface reflectance and temperature combined with vegetation indices. We
consider both spatial and temporal information. Data were downloaded from the Google Earth
Engine repositories using our in-house software, which was earlier mentioned in Section 7.2.

For our experiments, we downloaded satellite data captured in 2004 belonging to an area
of size approximately equal 722, 500 km2, depicted in Figure 7.6. Note that the 2004 wildfire
season was the worst on record in the U.S. state of Alaska in terms of area burned. About
27, 000 km2 of Alaska regions were affected by wildfires.
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Figure 7.7: Alaska wildfires season 2004: highly unbalanced data set 3, 317, 870 (97.92%) of
background pixels and 70, 631 (2.08%) pixels are associated with wildfire regions.

As mentioned in the previous section, we used boundaries collected from the MTBS prod-
uct for labelling pixels representing areas, which are affected by fire. Anyway, other pixels
are considered as background. From it, we get highly unbalanced data set having 3, 317, 870
of background pixels (97.92%) and 70, 631 of wildfire pixels (2.08%), see Figure 7.7.

Further, we split the image area (1918 x 1780 px) horizontally into training and test data
sets in a ratio 3 : 1. A larger part is used for training models, and a smaller one is used
for evaluating their performance. Time series length is 1 year (46 eight-day periods). Since
we fuze data of reflectance (7 spectral bands), temperature, and 3 vegetation indices,11 the
dimension of the time series is then 11.

(a) Colour infrared, plants in red. (b) Enhanced vegetation index. (c) Norm. diff. vegetation index.

Figure 7.8: Vegetation distribution in Alaska (August 8, 2004).

11Vegetation health is represented by NDVI, EVI and EVI2 indexes.
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Figure 7.9: Example of eigenbands. White pixels are related to areas removed from the
training and test data sets. These pixels are related to areas not monitored during the sensor
issue (removed from MTBS), or the northest part of Arctic Alaska.

We are deliberate about what data and features we are feeding to the SVM training
procedure in the following experiments. First, we clean data such that we drop pixels not
observed in MTBS (labelled by 6). By this approach, we also eliminate gap-filling NaNs in
the MODIS products. Since pixels are represented by time series, we need to standardize
them within each of the 11 features (convert to z-scores).

Then, we smoothed out the time series using the Savitzky–Golay (SG) filter. In the follow-
ing experiments, we set polynomial order and window length to 2 respective 10 as parameters
of the SG filter. We tested various combinations of a window length and a polynomial order,
and it seems that these parameters are reasonable for our data. Last, we apply dimensionality
reduction using PCA per each feature, retaining enough components to explain data ranging
from 80% to 95% of variance, denoted as var. We get from 5 to 28 eigenbands per feature,
see Table 7.1 and Table 7.2. in following experiments, we also study influence of each one
transformation in our experiments. Example of two eigenbands are depicted in Figure 7.9.

We trained the series of semantic segmentation models employing our PermonSVM tool
on NVidia DGX-2 machine at IT4Innovations, including fine-tuning performed by grid-search
and cross-validation (HyperOpt) combining transformations mentioned above. DGX-2 is two
PFlop/s system equipped with two high-end x86_64 processors (Intel Xeon Platinum, 8168)
and 16 NVIDIA V100-HBM2 GPUs.12 We utilized all 16 GPUs in the following experiments.

12The technical information about NVidia DGX-2 is mentioned in ??. Further information can be found on
IT4Innovations webpages – https://www.it4i.cz/en/infrastructure/nvidia-dgx-2.
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To avoid additional computational overhead, we used relaxed-bias approaches for both
l1-loss and l2-loss formulations; their advantages are discussed in Section 5.5.3. We choose
the MPRGP algorithm as a QP solver for optimization problems arising from QP-SVM formulations.
An expansion of an active set was performed using a projected CG for reasonably represented
data (reduced using PCA and smoothed out using the SG filter). Otherwise, a fixed expansion
step is computed; Γ = 10 is used in the proportioning test. The best penalty Cbest is selected
using a HyperOpt approach (with enabled warmstart) from the following set:

SC = {10i | i ∈ {−3.0, −2.9, −2.8, . . . , −2.2, −2.1, −2.0}}. (7.1)

The volume of data used in the following experiments is nearly 67 GB, each combination of
transformation is stored separately in HDF5 file and uploaded to cluster. The performance
of attained models are summarized in Table 7.1 and Table 7.2. The visualization of wildfire
predictions using the best attained model is depicted in Figure 7.10.

(a) Comparison of ground truth and predicted wildfire localization on the training data set.

(b) Comparison of ground truth and predicted wildfire localization on the test data set.

Figure 7.10: Side by side comparison of ground truth and predicted localization of wildfires
on training and test data set obtained using the best model trained using l2-loss SVM, which
is mentioned in Table 7.2. Black pixels are related to the areas removed from training and
test data sets.
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transformation #features
(len×dim)

#Hessian mult.
(train. time [s]) Cbest

model scores (test) training time
+ HyperOpt [s]z-score PCA / var. SG filter sensitivity precision F1 mIoU

46× 11 DIVERGED
× 46× 11 DIVERGED

× 46× 11 DIVERGED
× × 46× 11 6808 (29.24) 5e−3 0.8672 0.5473 0.5575 0.4919 3279.65
× × / 0.80 17× 11 1618 (2.29) 3e−3 0.8904 0.5467 0.5537 0.4865 2977.87
× × / 0.80 × 5× 11 1993 (2.99) 8e−3 0.8903 0.8207 0.8520 0.7698 1915.12
× × / 0.90 23× 11 1032 (1.78) 1e−3 0.8634 0.5464 0.5558 0.4905 3566.99
× × / 0.90 × 8× 11 1792 (2.76) 8e−3 0.8956 0.6576 0.7219 0.6348 2156.82
× × / 0.95 28× 11 1967 (3.46) 8e−3 0.7269 0.8563 0.7768 0.6888 3950.33
× × / 0.95 × 11× 11 1503 (2.36) 3e−3 0.9266 0.5929 0.6408 0.5638 2821.76

Table 7.1: Comparison of attained models for wildfires localization trained using 16 GPUs NVIDIA Tesla V100- HBM2 (DGX-
2, IT4Innovations), 16 MPI ranks. Solver: MPRGP, an expansion step is performed using the projected CG step, Γ = 100 in
proportion criterion, rtol = 0.1, loss type l1-loss, relaxed-bias formulation, single precision. The best penalty C was selected using
hyper-parameter optimization, which was performed employing cross-validation combined with grid-search, from a set SC , earlier
defined in (7.1).
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transformation #features

(len×dim)
#Hessian mult.
(train. time [s]) Cbest

model scores (test) training time
+ HyperOpt [s]z-score PCA / var. SG filter sensitivity precision F1 mIoU

46× 11 DIVERGED
× 46× 11 3874 (14.01) 1e−3 0.7420 0.5614 0.5898 0.5301 7003.38

× 46× 11 DIVERGED
× × 46× 11 2541 (6.67) 1e−3 0.8722 0.5484 0.5598 0.4939 2739.81
× × / 0.80 17× 11 455 (< 1) 1e−3 0.8770 0.7000 0.7598 0.6704 872.03
× × / 0.80 × 5× 11 465 (< 1) 1e−3 0.8683 0.8587 0.8634 0.7840 481.15
× × / 0.90 23× 11 436 (< 1) 1e−3 0.9139 0.6144 0.6715 0.5904 1055.83
× × / 0.90 × 8× 11 446 (< 1) 1e−3 0.9324 0.6913 0.7625 0.6723 771.88
× × / 0.95 28× 11 405 (< 1) 1e−3 0.9104 0.7625 0.8195 0.7318 1266.69
× × / 0.95 × 11× 11 436 (< 1) 1e−3 0.9112 0.6786 0.7462 0.6569 1022.95

Table 7.2: Comparison of attained models for wildfires localization trained using 16 GPUs NVIDIA Tesla V100- HBM2 (DGX-
2, IT4Innovations), 16 MPI ranks. Solver: MPRGP, an expansion step is performed using the projected CG step, Γ = 100 in
proportion criterion, rtol = 0.1, loss type l2-loss, relaxed-bias formulation, single precision. The best penalty C was selected using
hyper-parameter optimization, which was performed employing cross-validation combined with grid-search, from a set SC , which
was earlier defined in (7.1).
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(a) Training fire map (ground truth). (b) Predicted fire map (training, l1-loss). (c) Predicted fire map (training, l2-loss).

(d) Test fire map (ground truth). (e) Predicted fire map (test, l1-loss). (f) Predicted fire map (test, l2-loss).

Figure 7.11: A side by side comparison of wildfire predicted by means of the best l1-loss and l2-loss models and the ground
truth on the training and test data sets.
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Comparing results summarized in Table 7.1 and Table 7.2, we can see that dimensionality
reduction using PCA is necessary to train models for both l1-loss and l2-loss (relaxed-bias)
formulations. Without this reduction in preprocessing step, the solver diverged in 3 and 2
cases for l1-loss respective l2-loss formulation, or we attained a model having performance
scores around 0.5 in the F1 and mIoU metrics. Recall: Models having these metrics around
0.5 are considered as “a random classier” or “a random guess” in ML community. It means
that these models showed no better accuracy than a coin flip.

Let us analyze the remaining models trained using the l1-loss formulation. It seems
reasonable to combine the SG filter with data reduction using PCA to speed up the training
of models, which could perform reasonably well. We tested the following values 0.8, 0.9, and
0.95 for retained variance. As mentioned above, we fixed values for the SG filter such that a
window length is 10 and polynomial order is 2.

Next, we can see that increasing variance causes the model to perform worse when data
was smoothed using the SG filter. It seems we smoothed out data quite aggressively, and PCA
prevents the classifier from overfitting, thus it is reasonable to drop out reasonable amount
of information from data. When we only performed reduction data using PCA, the model
performed better when we increased retained variance. However, the best-attained model
performed worse than the previous case (PCA + SG filter) - difference is 8.1%. Developing
of the mIoU score depending on retained variance for PCA and PCA combined with the
SG filter, is depicted in Figure 7.12 for regularized l1-loss SVM. Developing of the related
training times are depicted in Figure 7.13, on the next page.

The best model was trained (including hyper parameter optimization) in 1915s, i.e. 31min
55s, and its performance scores are 0.76 (mIoU) and 0.85 (F1). For this model, a retained
variance was 0.8, and reflectance data was smoothed using the SG filter.

0.8 0.9 0.95
retained variance

0.50

0.55

0.60

0.65

0.70

0.75

m
Io

U

mIoU (PCA)
mIoU (PCA + Savitzky-Golay)

Figure 7.12: Developing of mIoU score depending on retained variance for PCA, and PCA
combined with Savitzky-Golay filter (regularized l1-loss SVM).
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Figure 7.13: Developing of training time depending on retained variance for PCA, and PCA
combined with Savitzky-Golay filter (regularized l1-loss SVM).

Now, we analyze the models trained using the l2-loss SVM. Looking at the results sum-
marized in Table 7.2, we can see a similar nature as in the case of training models using an
approach based on the regularized l1-loss SVM. The dimensionality reduction using PCA is
necessary to train a model; otherwise, a solver diverges in 2 from 4 cases and these two models
have performance scores around 0.5, which are basically random classifiers as we mentioned
above.

Further, we can observe that PCA prevents overfitting for lower values of a retained
variance when data is smoothed using the SG filter. This is similar to the l1-loss case,
discussed above. Otherwise, we trained models with the performance scores below 0.7 in the
mIoU metric. The best model was trained (including hyper parameter optimization) in 481s,
i.e. 8min 1s, and its performance scores are 0.78 (mIoU) and 0.86 (F1). For this model, a
retained variance was 0.8, and reflectance data was smoothed using the SG filter – same as
for l1-loss. Note that it is the best model in the sense of the mIoU score overall.

A visual comparison of prediction of wildfires localization using both l1-loss and l2-loss
models with ground truth is depicted in Figure 7.11. Based on this visualization, we can
conclude that these models can perform similarly.

Our model predictions may be more useful if we output probabilities of class membership
P (class | input), rather than simply predicting class lables. This allows us to have evaluate
confidence in our predictions. We are exploring using the Platt scaling (or the Platt calibration)
to do this. Platt scaling constructs a logistic regression model (using maximum likelihood
estimation) to map the SVM output to the posterior probability:

P (y = 1 | x) ≈ PA,B (y = 1 | x) , (7.2)
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where the parameters A, B determine the slope of the sigmoidal curve respective lateral
displacement and PA,B (y = 1 | x) is as follows:

PA,B (y = 1 | x) = 1
1 + eAhθ(x) + B

. (7.3)

To avoid overfitting, an additional training set (the calibration set), CA, of l samples is used:

CA := {(hθ(x1) , y1) , (hθ(x2) , y2) , . . . (hθ(xl) , yl)}. (7.4)

The parameters are determined by means of minimizing a binary cross-entropy so that:

(A∗, B∗) = arg min
A,B

−
l∑︂

j=1
tj ln pj + (1− tj) ln(1− pj) , (7.5)

where pj = PA,B (yj = 1 | xj), and tj is a target probability associated with the sample xj :

tj =

⎧⎨⎩
Np+1
Np+2 . . . yj = +1,

1
Nn+2 . . . yj = −1,

(7.6)

where Np and Nn is number of positive (wildfires) and negative (background) pixels. This
optimization problem is not associated with QP, and we solve it using (quasi-)Newton method
implemented in TAO component of PETSc. We introduce visualization of our preliminary
results in Figure 7.14.

Figure 7.14: Visualization of preliminary results attained by Platt scalling approach.
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Unsupervised learning
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Chapter 8

Vector quantification

Robert Sokal and Peter Sneath introduced the concept of numerical taxonomy in the 1960s.
After a while, ideas beyond this concept were published in the book called Numerical Tax-
onomy. The Principles and Practice of Numerical Classification [81]. The fundamentals of
numerical taxonomy are essentially based on grouping biological systems into clusters such
that entities are as similar as possible inside a cluster and various among clusters. Such an
idea appears in clustering techniques used in modern data mining approaches. We can say
that Sokal and Sneath laid down the foundations for clustering techniques firstly developed
in the 1960s and early 1970s.

8.1 Introduction

Techniques of vector quantification [82] belong to a collection of coding techniques used for
lossy data correction and compression. They seek a representative codevector of a cluster,
thus, they can be directly used for a prototype-based clustering. In case of a fixed number
of prototypes k ≤ k∗, where k∗ is an optimal number of prototypes (clusters), it corresponds
to the well-known clustering methods of the k-means type, which are based on an idea of
minimizing intra-cluster compactness.

The essential idea of k-means goes back to 1950s, when Hugo Steinhaus (a Polish mathe-
matician) published paper, namely Sur la division des corp materiels en parties [83], where he
formulated and discussed a solution of partitioning a composite material into k homogenous
parts. Apparently, Steinhaus proposed a continuous formulation of the k-means algorithm
in a multidimensional case at first. Independently on the Steinhaus’ work, Stuart Lloyd an
engineer at Bell Labs came up with a similar iterative algorithm as a technique for pulse-code
modulation (PCM). Unlike Steinhaus, who formulated the problem in R3, Lloyd introduced
the method for R1 cases.
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Figure 8.1: From left, visualisations of 2 and 3 dimensional Voronoi diagrams, where the red
points within Voronoi cells represent centroids of clusters. Source: Ying et al. Point Cluster
Analysis Using a 3D Voronoi Diagram with Application in Point Cloud Segmentation [85].

His idea firstly appeared in internal technical report in 1957 at Bell Labs. However, this
methodology has not “come to light” until 1982. After almost 25 years, Lloyd published his
original algorithm in paper Least squares quantization in PCM [84].

In the decades, Lloyd’s idea was many times modified into the contemporary k-means.
Among fundamental works, we would mention MacQueen’s paper Some methods for classi-
fication and analysis of multivariate observations [86], where term k-means was firstly used.
In this paper, MacQueen followed his previous work The classification problem [87] related to
solutions of the Marschack’s economical problems [88, 89]. MacQueen’s solution was based
on minimization of SSQ (Sum of Squared Distances) continuous criteria for multidimensional
value distributions.

Further, Forgy proposed a modification of the k-means for clustering data in continuous
space that uses a batch centroid model, where a centroid is considered as a geometric centre of
a convex-shaped object [90]. This interpretation can take as a generalization of the mean. The
similar principle was mentioned in the Lloyd’s work. It was defined for discrete data though.
Therefore, it is why a standard k-means algorithm is sometimes referred to as Lloyd-Forgy.
Through the literature, we can meet with various terms, names, and notations associated with
the k-means. By the term k-means, we will call a general problem formulation in this text.
Other terms are often linked to a specific approach for addressing this problem that include
algorithms, their variations, and adaptations.

8.2 The k-means algorithm

The standard k-means algorithm [84] belongs to partitional clustering techniques. This basi-
cally means, the algorithm decomposes an initial set:

X def= {x1, x2, . . . , xm} ⊂ Rn (8.1)
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into k clusters:

S def= {S1, S2, . . . , Sk}, for all Si ⊂ X, i = 1, 2, . . . , k, (8.2)

so that the clusters are convex and mutually disjoint:

k⋂︂
j=1

Sj = ∅, (8.3)

and satisfy:

X =
k⋃︂

j=1
Si. (8.4)

A parameter k is appropriately chosen by a user or determined employing techniques for
evaluation of clustering results, e.g. Calinski-Harabasz [91] or Davies–Bouldin index [92]. In
addition, we consider that the sizes of the clusters S1, S2, . . . , Sk introduced in (8.2) follow:

card(Sj) ≥ 0 for all j ∈ IS, (8.5)

where IS
def= {1, 2, . . . , k} is an index set associated with a set S defined in (8.2), card(·)

represents a set size (cardinality), and the condition (8.5) allows empty clusters.

Definition 6 (Clustering) Consider IX = {1, 2, . . . , m} as an index set related to an initial
set X defined in (8.1). We then define a clustering as a function ϕ, which maps indices of
samples from IX to an index set IS:

ϕ : IX → IS. (8.6)

Using a mapping ϕ defined in (8.6), let us determine an optimal representative1 µ∗
j ∈ Rn

associated with samples belonging to a cluster Sj such that:

µ∗
j = arg min

µ

m∑︂
i=1

dist(xi, µ) χSj (xi) , (8.7)

where
dist : Rn × Rn → R (8.8)

is a distance considered as a similarity measure and χSj (·) represents an indicator function
associated with a cluster Sj . If a distance dist (·, ·) corresponds to a squared L2 metric, then
µ∗

j becomes a mean of samples assigned to a cluster Sj .

1This representative is called a centroid in a case of the k-means algorithm.
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In addition, the k-means algorithm minimizes a within-cluster variance. For now, let us
consider a cluster Sj , where j ∈ IS. Then, we define a variance within a cluster Sj as follows:

Var(Sj) def=
∑︂
x∈Sj

dist
(︂
x, µ∗

j

)︂
card(Sj) . (8.9)

Formally, the standard k-means algorithm solves an underlying optimization problem so that
it minimizes a residual sum of squares (RSS):

arg min
S

k∑︂
j=1

∑︂
x∈Sj

∥x− µj∥2 = arg min
S

k∑︂
j=1

card(Sj) Var (Sj) . (8.10)

A widely used stochastic solver for an optimization problem (8.10) is the Lloyd-Forgy
algorithm [84]. It is based on an iterative refinement technique such that it proceeds by
alternating between two steps, specifically assignment and update.

In its initial stage, the algorithm begins by a random selection of starting centroids.
Following this, it proceeds to assign each sample to a cluster, where a squared distance to its
associated centroid is minimal, and the memberships are programmatically stored in a vector
u:

u = [u1, u2, . . . , um] , (8.11)

such that its components ui, where i = 1, 2, . . . , m, are step-wisely associated with the input
sample x ∈ X.

Afterwards, it updates the centroids as a mean of samples within the actual clusters. This
is summarized in Algorithm 3.

Algorithm 3: RP (RandomPartition)
Input : X = {x1, x2, . . . , xm}, k ∈ N

1 {S1, S2, . . . , Sk}, u← RandomAssignment (X, k);
2 for i = 1→ k do
3 µi ← 1

card(Si)
∑︁
x∈Si

x;

Output: {(S1, µ1) , (S2, µ2) , . . . , (Sk, µk)}, u

Another commonly used approach for determining an initial guess is called the Forgy
method. [90]. An essential idea beyond this method is to randomly choose k samples from
a dataset X and use them as an initial guess. You can find a pseudo code of this approach
in Algorithm 4. Note that the Multiply-With-Carry algorithm [93] or Mersenne Twister [94]
can be used as pseudo-random number generators in the both the random partition approach
and the Forgy method.
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Algorithm 4: Forgy
Input : X = {x1, x2, . . . , xm}, k ∈ N

1 {µ1, µ2, . . . , µk} ← SelectRandomSeeds (X, k);
2 forall S

(0)
j do

3 S(0)
j ← ∅;

4 for i = 1→ m do
5 j∗ = arg minj=1,2,...,k

⃦⃦⃦
µj − xi

⃦⃦⃦
;

6 Sj∗ ← Sj∗ ∪ {x};
7 [u]i ← j∗;

Output: {(S1, µ1) , (S2, µ2) , . . . , (Sk, µk)}, u

The k-means algorithm converges when the largest centroid displacement becomes smaller
than a reasonably small square of ε ∈ R+:

∆(t) def= max
{︃ ⃦⃦⃦

∆µ
(t)
1

⃦⃦⃦2
,
⃦⃦⃦
∆µ

(t)
2

⃦⃦⃦2
, . . . ,

⃦⃦⃦
∆µ

(t)
k

⃦⃦⃦2
}︃
≤ ε2, (8.12)

where:
∆µ

(t)
i = µ

(t)
i − µ

(t−1)
i (8.13)

is based on the normalized residual sum of squares (NRSS), and t represents a number of an
actual iteration.

A second option for a stopping criterion can involve monitoring reassignments of samples.
Let ∆ be a change in a sample memberships after t-th iteration. This change can be expressed
by means of a ratio of reassigned samples to the total number of samples in an initial set X:

∆(t) =
card

(︂
Iˆ︁X(t)

)︂
card(X) , (8.14)

where:
Iˆ︁X(t)

def=
{︂

j ∈ IX : u
(t)
j ̸= u

(t−1)
j

}︂
. (8.15)

A sample assignment is practically implemented such that the memberships are stored in
a vector u. Now, we have all ingredients needed to introduce the Lloyd-Forgy algorithm; its
pseudocode is summarised in Algorithm 5 on the next page.

Unfortunately, the Lloyd-Forgy algorithm does not guarantee convergence to a global
optimum. Worse, it may fail to converge to a local minimum such that the algorithm yields
a partial “optimal” solution in a stationary point of an objective function (8.10), we refer the
following paper [95] for further details.

A commonly used strategy for overcoming the issue of achieving an optimal solution is
based on the following approach: the algorithm is executed several times using different initial
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guesses, which commonly leads to increasing the chance of attaining a local optimum. Among
the achieved solutions, the best one is chosen such that the related RSS is minimal. Another
way is to use more sophisticated initialization approaches.

Algorithm 5: StandardKmeans (Lloyd-Forgy)
Input : X = {x1, x2, . . . , xm}, k ≥ 2, small ε ∈ R+, m ∈ N

1 /* initialization */
2 INITIALIZE t← 0;
3 INITIALIZE ∆←∞;
4 if Forgy Strategy then
5

{︂(︂
S(0)

1 , µ
(0)
1

)︂
,
(︂
S(0)

2 , µ
(0)
2

)︂
, . . . ,

(︂
S(0)

k , µ
(0)
k

)︂}︂
, u(0) ← Forgy (X, k);

6 else
7

{︂(︂
S(0)

1 , µ
(0)
1

)︂
,
(︂
S(0)

2 , µ
(0)
2

)︂
, . . . ,

(︂
S(0)

k , µ
(0)
k

)︂}︂
, u(0) ← RP (X, k);

8 M(0) ←
{︂

µ
(0)
1 , µ

(0)
2 , . . . , µ

(0)
k

}︂
;

9 /* iteration */
10 while ∆(t) > ε ∧ t < m do
11 t← t + 1;
12 M(t) ← ∅;
13 /* update step */
14 for i = 1→ k do
15 µ

(t)
i ← 1

card
(︂
S(t−1)

i

)︂ ∑︁
x∈S(t−1)

i

x;

16 M(t) ←M(t) ∪ {µi};
17 S(t)

i ← ∅;
18 /* assignment step */
19 for i = 1→ m do
20 j∗ = arg minj=1,2,...,k

⃦⃦⃦
µj − xi

⃦⃦⃦
;

21 S(t)
j∗ ← S(t)

j∗ ∪ {x};
22 [u]i ← j∗;
23 compute ∆(t) using (8.12) or (8.14);

Output: M, u, t, RSS

8.3 The k-means++ algorithm

The Lloyd-Forgy approach does not guarantee an accuracy in the sense of finding an opti-
mal solution as we mentioned in the previous Section 8.2. In many practical examples, the
algorithm generates arbitrary bad clustering results. It arises from the fact that a ratio:

ϕ(X)
ϕOPT(X) (8.16)
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is unbounded even m (number of samples) and k (number of clusters) are fixed; ϕOPT rep-
resents an optimal solution (clustering). It is mainly a consequence of a uniformly random
choice of initial guess.

Despite these facts, an implementation details of the Lloyd-Forgy algorithm, and its speed
in the sense of convergence rate, are getting the algorithm very appealing in the various
fields ranging from biology to computer graphics. The worst-case scenario of its running
time is superpolynomial with factor 2Ω(√

m) [96]. However, it is considered to be of a linear
complexity O(m) in practice, when a number of iterations and parameters are fixed. This
makes the k-means algorithm very promising. Moreover, Duda et al. observed and published
in [97] the following fact: “The number of iterations is generally much less than the number
of samples”.

Algorithm 6: kmeans++
Input : X = {x1, x2, . . . , xm}, k ≥ 2, small ε ∈ R+, m ∈ N

1 /* initialization */
2 INITIALIZE t← 0;
3 INITIALIZE ∆←∞;
4 µ

(0)
1 ← SelectRandomSeed (X);

5 for j = 2→ k do
6 p← o;
7 D ← 0;
8 foreach i = 1→ m do
9 d← min

(︂⃦⃦⃦
µ

(0)
1 − xi

⃦⃦⃦
,
⃦⃦⃦
µ

(0)
2 − xi

⃦⃦⃦
, . . . ,

⃦⃦⃦
µ

(0)
j − xi

⃦⃦⃦)︂
;

10 p (x)← d2;
11 D ← D + [p]i;
12 foreach i = 1→ m do
13 P [X = xi]← [p]i

D ;
14 µ

(0)
j ← SelectDistributedRandomSeed (X, P );

15 /* assignment */
16 foreach x ∈ X do
17 j∗ = arg minj=1,2,...,k

⃦⃦⃦
µ

(0)
j − xi

⃦⃦⃦
;

18 S(0)
j∗ ← S(0)

j∗ ∪ {x};
19 M(0) ←

{︂
µ

(0)
1 , µ

(0)
2 , . . . , µ

(0)
k

}︂
;

20 continue StandardKmeans on line 10
Output: M, u, t, RSS

A way how the issue associated with a partial solution could be overcome was pro-
posed by David Arthur and Sergei Vassilvitskii in 2007. They developed a technique called
k-means++ [98] aimed at improving an accuracy of an initial guess estimation. This method
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adjusts the random initialization in such a way that the probability of selecting a particular
sample as an initial centroid is directly proportional to its squared distance from the nearest
already chosen centroid. Pseudocode of this method is outlined in Algorithm 6. By means
of this modification, a solution returned by a minimizer is, at the most, worse by factor
8 (ln(k) + 2) than an optimal solution ϕOPT.

In this chapter, we summarized two commonly used variants related to algorithms of a
k-means type, particularly the standard k-means employing the Lloyd-Forgy algorithm as an
underlying solver and k-means++. However, there are other adaptations of these methods,
which we briefly mention below.

The online version of the Lloyd-Forgy algorithm, where the means are immediately up-
dated after point reassignments, is called the MacQueen algorithm [87]. The algorithm known
as Partitioning Around Medoids (PAM) [99] uses a greedy search to determine an optimal
representative of clusters from actual samples in an initial data set X, and k-medians employs
the Weiszfeld algorithm [100] for determining medians as the representatives of clusters. By
collaborating with Pavel Skalný, we published a conference paper [101], where we proposed
the “plus-plus” adaptations for the PAM and k-medians algorithms – we used a similar initial-
ization strategy as in the case of k-means++ algorithm. The algorithm PAM and k-medians
slightly differ in updating step, which arises from the fact that they used a different represen-
tative of clusters. For simplifying of this text, we mention this step in next section, where we
also describe a parallel implementation of these methods, alongside k-means and k-means++.

8.4 Parallel implementation

The aim of this section is to describe a parallel implementation of the algorithm introduced
in Sections 8.2 and 8.3. Specifically, we focus on parallelization of k-means, k-medians, PAM,
and their “plus-plus” variants [101]. Recall that the last two algorithms differ in updating
step, where another type of representative is computed. In collaboration with Pavel Skalný,
we successfully implemented these approaches into software written in C++ programming
language and designed for running in massively parallel distributed environment containing
hundreds computational cores. For inter-process communication, we employ Message Pass-
ing Interface (MPI), which is currently a dominant protocol in high-performance computing
(HPC) environments used for data exchange.

Using MPI-IO, input data X ⊂ Rn are effectively distributed among multiple processes
such that a load-balancer ensures that each process owns a roughly equal proportion of X.
By this approach, we prevent overloading some computational cores while other ones remain
idle. This is one of the essential steps for optimizing an overall running time in a massively
parallel distributed environment, e.g. the top-world supercomputers.
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In the upcoming sections, we describe the concepts of parallelization strategies for the
clustering algorithms mentioned above. While the fundamental principles are mostly similar,
they differ in specific subprocedures. For example, the inter-process communication required
for determining medoids is typically higher than for determining centroids of clusters; this is
the same for “plus-plus” and standard initialization approaches.

8.4.1 Initialization step

Unless otherwise stated, let us refer centroids, medoids, and medians as cluster representatives,
or simply representatives, for the reading convenience of this text. At first, we describe a
parallel strategy for determining an initial guess using a standard (random partition) approach
earlier introduced in Algorithm 3.

Here, a master (zero) process randomly selects k (related to a number of clusters) indices
from an index set IX. These indices are associated with samples that were determined as
initial representatives.2 Then, a master process stores the selected samples belonging to its
proportion of an initial set X to an array of cluster representatives, and sends indices of
the remaining ones to the slave processes using MPI broadcast. Afterwards, it gathers the
remaining selected samples from the slave processes. We use the implementations of send and
receive procedures from the Boost framework [102] (C++ API):

• world.recv(mpi::any_source, 0, ...) in a root process,

• world.send(0, 0, ...) in slave processes,

where world is related to an MPI communicator object (boost::mpi::communicator). In
the final step of the standard initialization of representatives, a master process broadcasts all
initial representatives to other processes using MPI broadcast. Then, the samples are locally
assigned to an appropriate cluster based on their minimal distances to representatives of those
clusters, as we mentioned in Section 8.2.

The “plus-plus” initialization (Algorithm 6) related to the algorithms of “k-means type”
requires slightly more inter-process communication than the previously introduced parallel
implementation of the standard version, i.e. the random partition. At first, a master process
randomly selects one index from IX. Then, it gathers and broadcasts a sample associated with
this index similarly to what was mentioned for the standard approach: if a master process owns
this sample, then the process broadcasts this sample to slave processes. Otherwise, it gathers
this sample from the slave processes by means of send/recv procedures, and broadcasts this
sample to all processes then. Afterwards, probability weights D(x)2 are computed locally, and
step-wisely merged using the send/recv mechanism in a master process for a selection of a

2Note, we employ Mersenne Twister (MT97) [94] as a pseudo-random number generator in the software
implementation.
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next index associated with a next starting representative. The initialization process repeats
until k representatives are not determined. Then, the samples are assigned to an appropriate
cluster locally.

8.4.2 Update step

Once the initial guess including representatives and memberships (stored in u) is determined,
an algorithm recomputes cluster representatives such as means, medians, and medoids de-
pending on a specific clustering method.

In the case of k-means (or k-means++), the cluster representative is a centroid, which
is basically an arithmetic mean of samples belonging to a particular cluster. Parallelizing the
update step for this method is quite straightforward. Each process maintains local sizes of
clusters and sums of samples within these particular clusters, which are associated with a local
proportion of an input data set X. Then, the sizes and the sums are collectively reduced across
all processes using mpi::all_reduce() – implemented in the Boost framework. Afterwards,
the centroids are computed locally.

The k-medians algorithm employs the Weiszfeld algorithm [100] for determining a
cluster representative as a geometric median. Let µ

(t)
j be a geometric median determined in

an iteration t and associated with a cluster Sj . Subsequently, the algorithm updates a median
in an iteration t + 1 using the following formula:

µ
(t+1)
j

def=

⎛⎝∑︂
x∈Sj

x

∥x− µ
(t)
j ∥

⎞⎠/
⎛⎝∑︂

x∈Sj

1
∥x− µ

(t)
j ∥

⎞⎠ . (8.17)

A practical parallel implementation of the update step in order to the k-median algorithm
involving a parallelization of computing the equation (8.17). It follows a similar approach,
which we implemented for the k-means algorithm: each nominator and denominator are
computed on a local proportion of an input data set and, then, they are reduced across all
processes by mpi::all_reduce(). Afterwards, medians are determined locally.

Finally, we will discuss the implementation details of parallelizing an update step associ-
ated with the PAM algorithm. Recall this algorithm finds an optimal representative among
samples in an initial set X. This basically means, the representatives are not computed as
means, medians, or using any other approach based on samples within the actual clusters;
they are just selected from an initial set X.

Before updating sample assignments u, the algorithm performs a greedy search, which is
known as SWAP, to find the best representative within these clusters. Let us denote a set of
non-medoid samples as Oj associated with a cluster Sj . We summarize an approach of finding
the best representative of a cluster using SWAP in Algorithm 7.
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Algorithm 7: SWAP
1 randomly select o ∈ Oj

2 swap mj and o

3 recompute a cluster cost as a summation of distances between vectors within a same
cluster and their respective medoid,

4 if the a cluster cost increased, remove o from O, use original mj and continue with
the step 1, otherwise finish.

A parallelization of SWAP can proceed as follows: a master process selects an index of
a non-medoid sample for each cluster. If a master process owns these samples, it broadcasts
them to the slave processes. Otherwise, a master process gathers these samples from the slave
processes by send/recv mechanism and, then, it distributes them to other processes by means
of MPI broadcast. Afterwards, cluster costs are computed on a local proportion of X, and
then, they are reduced across all processes by mpi::all_reduce(). Step 4 is performed locally.

8.5 Benchmarks

This section deals with introducing an application dealing with brittle and ductile fracture
detection employing vector quantification techniques introduced in a previous Chapter 8,
namely k-means and its variant k-means++, k-medians, and PAM. The results were attained
during collaboration with Pavel Skalný (VSB-TU Ostrava), and were published in two papers
[101, 103]. Note that evaluating the fracture resistance of a material (commonly steel) is
crucial in civil engineering applications, e.g. building oil and gas pipelines in Siberia regions.

Recently, the Drop Weight Tear Test (DWTT) is typically used for testing this type
of resistance. After realizing the test, an expert evaluates the material quality as a ratio
between a ductile and brittle regions of a damaged area, depicted in Figure 8.2. Although
expert’s analysis has many advantages, human mistakes are also incorporated and expert’s
opinions may vary significantly. Therefore, other mostly automated techniques are developed
for industrial applications.

Figure 8.2: Photo depicting a fracture area of API 5L X-70 sheet steel (18.7 mm) after
performing DWTT test. Published in [101].
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3D scanning to capture a fracture area as a point cloud combined with computer analysis
based on ML approaches represent common alternatives to expert evaluation for assessing
material quality. To characterize a fracture area, fractal geometry can be used to determine
feature descriptors. However, this approach has some disadvantages, e.g. characteristics must
be calculated on a sufficiently large number of points, which are not always available.

(a) A reconstructed mesh from point cloud, which con-
tains 109, 948 points.

(b) Inclination of fracture area in x-direction.

(c) Inclination of fracture area in y-direction. (d) Inclination of fracture area in z-direction.

Figure 8.3: Reconstructed mesh and its features represented by normal vector in x, y, and
z direction.

Thus, we decided to work on the concept where we locally evaluate the quality of the
specimens using vector quantification techniques. For reconstructing an original fracture area
from the point cloud, we used approach based on Delaunay triangulation [104]. As descriptors
of fracture area, we choose normal vectors in each triangle of a reconstructed mesh, because
they highly correspond to the brittle and ductile regions, see Figure 8.3.

Since clustering belongs to unsupervised learning, achieved results are evaluated using
different metrics than in a previous application, where we employ supervised learning ap-
proaches. Typically used metrics for these purposes are the Calinski-Harabasz (CHI) [91] and
Davies-Bouldin (DBI) [92] indexes. Further, the CHI index is defined as follows:

CHI
def= B (k) (n− k)

W (k) (k − 1) , (8.18)

where k is number of clusters and n is number of input vectors, B (k) represents between-
cluster sum of squares:

B(k) def=
k∑︂

i=1
card(Si)∥µi − µ∥2, (8.19)
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where µ is an overall centroid of data, and W (k) is within-cluster sums of squares:

W (k) def=
k∑︂

i=1

∑︂
x∈Si

∥x− µi∥2. (8.20)

The criterion based on CHI index is analogous to an F-ratio in ANOVA and the highest
value determines the best clustering result [101]. DBI criterion is also based on a ratio of
within-cluster and between-cluster distances and is defined as follows:

DBI = 1
k

k∑︂
i=1

max
j=1,2,...,k,j ̸=i

Dij , (8.21)

where:
Dij = dī + dj̄

dij
, (8.22)

and d̄i is average distances between each point in a cluster Si and a centroid µi associated
with this cluster Si, which is defined such that:

d̄i = 1
card(Si)

∑︂
x∈Si

∥x− µi∥, (8.23)

it is similar for d̄j ; dij represents the distance between the centroids belonging cluster Si and
Sj , formally:

dij
def= ∥µi − µj∥. (8.24)

Smaller value of DBI is acceptable as a better result value [101].
In our experiments, we compared k-means, PAM, and k-medians algorithms for detecting

brittle and ductile areas of DWTT specimen. Since we study two regions, we set k = 2. We
have implemented software in C++, which is designed for running computation in a parallel
distributed environment containing hundreds of computational cores. Implementation details
about this software were introduced in Section 8.4.

In our experiments, we study quality of commercially produced API 5L steel (thickness of
a sheet is 18.7 mm). [101]. Note that the surface of mesh was constructed from point cloud
produced using Limess Measurement Technique.3 This point cloud contains 109, 948 points.

We ran the experiments on the Salomon supercomputer (retired now). Salomon consists
of 1008 compute nodes. Each compute node contains two 2.5 GHz, 12-core Intel Xeon E5-
2680v3 (Haswell) processors and 128 GB of memory. Compute nodes are interconnected by
InfiniBand FDR56. Salomon has the peak performance around 2 petaFLOPS, you can find
further information on the following website 4.

3https://www.limess.com/en/
4https://www.it4i.cz/en/infrastructure/salomon
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(a) k-means (b) k-means++

(c) PAM++ (d) k-medians

Figure 8.4: Visualization of 3 best results (k-means, k-means++, PAM++) and the worst
one (k-medians). These visualizations were published in [101].

The results are summarized in Table 8.1. Analyzing them, we can conclude that the
best ones are attained using k-means, k-means++, and PAM++ algorithms. Comparing
with Figure 8.3, we can see that they also highly correspond to brittle and ductile fracture
areas. Visualizations of representative results are depicted in Figure 8.4, where orange areas
correspond to brittle fracture, and the ochre regions are associated with ductile fracture. Note
that the worst result were attained by k-medians algorithm.

CHI (higher better) DBI (lower better)
k-means 122,630 0.8612
k-means++ 122,630 0.8612
PAM 63,973 0.7372
PAM++ 122,240 0.8607
k-medians 12,070 0.8619
k-medians++ 109,070 0.8343

Table 8.1: Evaluation of attained results using Calinski-Harabasz (CHI) and Davies-Bouldin
(DBI) criterions. These results were published in [101].

Now, let us briefly discuss the parallel scalability of these algorithms. The algorithms
k-means, k-means++, k-medians, and k-medians++ converge in the order of tens of seconds
on 2 MPI processes. When the number of MPI processes is higher than 2, then compu-
tational time increases because the amount of inter-process communication gets higher and
computation runs slowly.

In the case of the PAM-type algorithms, they compute the total cluster cost in each update
step. Thus, parallelization makes sense. Scalability graphs for PAM and PAM++ algorithms
are depicted in Figure 8.5. These graphs show that the PAM algorithm scales fine up to
8 MPI processes, gets stuck between 8 and 16 processes, and scales well up to 48 processes,
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which corresponds to 2 nodes. The PAM++ algorithm scales almost linearly up to 16 process,
then the ratio between the amount of inter-process communication and computational times
is higher, and the efficiency of this parallelization approach gets lower. However, it still scales
up 120 MPI processes (5 nodes).
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(b) PAM++

Figure 8.5: A strong-scalability tests of PAM and PAM++ algorithms, which were published
in [101].
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Chapter 9

Spectral clustering

This chapter focuses on another unsupervised learning technique used for clustering, which
is based on spectral properties of a graph Laplacian matrix. This matrix will be properly
defined later in this chapter in Section 9.1 on page 119. For the purpose of introducing this
method, let us consider a graph Laplacian matrix as a matrix having similar properties as
a discrete Laplace operator. Let us denote this matrix as L ∈ Rm×m, where m represents
number of samples.

A bottom line of spectral clustering methods is geometrically based on assuming that an
initial data set:

X def= {x1, x2, . . . ,xm} ⊂ Rn (9.1)

is sampled from a Riemannian manifold Ω ⊂ Rn containing multiple connected components
forming non-overlapping parts of Ω. In a traditional approach related to spectral clustering
[105], samples belonging to a data set X are projected onto a null space Null(L), which is
associated with a Laplace operator. It can be viewed as a discrete Laplace operator on a
graph G that represents a part of Ω.

A dimension of this null space equals geometric multiplicity of a zero eigenvalue λ0 cor-
responding to an operator L. Then, such transformed samples are clustered by applying, for
example, vector quantification techniques such as k-means and k-means++ earlier introduced
in Section 8.2 respective in Section 8.3.

Definition 7 (Geometric multiplicity of eigenvalue) Let L ∈ Rm×m and λ be an eigen-
value of L. Let

Eλ
def= span{e : (L− λI) e = 0} (9.2)

be an eigenspace corresponding to λ. A dimension of Eλ is called geometric multiplicity of an
eigenvalue λ:

dim Eλ = mL(λ) . (9.3)
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Figure 9.1: Visual comparison results attained by the k-means and spectral clustering meth-
ods on the two spiral problem. The original image was downloaded from [107].

Recall. Concerning a structure of an operator L, it is obtained by a finite difference
method [106] on a graph G capturing a geometry of a discretized manifold Ω.

While algorithms of a k-means type minimize a within-cluster variance, an aim of spectral
clustering is maximizing an internal cluster connectivity. Note that a cluster represents a
component or merged various connected components associated with a graph G. Since vector
quantification (employing k-means) is incorporated as a part of a spectral clustering, we can
interpret a spectral clustering as a technique that could be used for outperforming k-means
for cases of non-convex shaped clusters either, see Figure 9.1. Further, spectral clustering is
commonly used as a technique for dimensionality reduction such that it embeds samples from
an initial data set X into a lower-dimensional feature space Rp, where mL(λ0) ≤ p < m.

Formally, spectral clustering relaxes an NP-hard optimization problem1 related to solve
a graph-cut problem so that it balances a trade-off between internal and external cluster
connectivity. Unless otherwise stated, we assume a graph is undirected and weighted such
that a weights related to its edges measures similarity between samples. The radial basis
function (RBF) is commonly exploited for determining such a level of similarity. In following
Sections 9.1 and 9.2, we generally introduce two approaches related to a spectral clustering,
specifically the unnormalized [105] and normalized [108] approaches, which we demonstrate
on image segmentation problems in Section 9.3, including statistical estimating a number of
zero eigenvalues in Section 9.3.1.

9.1 Unnormalized spectral clustering

Let V = {v1, v2, . . . , vm} be a set of vertices representing samples {x1, x2, . . . , xm} ⊂ X,
and let E be a set of edges:

E ⊂ {{vk, vl} : vk, vl ∈ V, k, l ∈ {1, 2, . . . , m}, k ̸= l}. (9.4)
1We assume a conjecture that P ̸= NP, therefore a reasonable relaxation is necessary.
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Then, we define an undirected graph G as a pair of edges E and vertices V such that:

G
def= (V, E) . (9.5)

Further, let W ∈ Rm×m be a weighed adjacency matrix corresponding to G, and let us
consider that this matrix contains non-negative values (weights), see Definition 8.

Definition 8 (Weighed adjacency matrix) A weighted adjacency matrix associated with
a graph G is a matrix W ∈ Rm×m

0 , where m = card(V), and entry wij ≥ 0 represents a
non-negative weight related to an edge connecting vertices vi and vj.

Then, we define a cut of a graph G as a set of mutually disjoint non-empty subsets of V:

{A1, A2, . . . , Ak} ⊂ V,
k⋃︂

i=1
Ai = V ∧

k⋂︂
i=1

Ai = ∅ (9.6)

such that:

cut(A1, A2, . . . , Ak) = 1
2

k∑︂
i=1

W (Ai, Ac
i ), (9.7)

where:
W (Ai,Ac

i ) =
∑︂

k∈Ai, l∈Ac
i

wk,l. (9.8)

The set Ac
i in (9.7) and (9.8) represents complement of the set Ai in V for ∀i ∈ {1, 2, . . . , k},

and wkl is an weight of an edge connecting the vertices vk and vl.

0 1 2 3 4 5

0

0.5

1

distance in L2 norm

sim
ila

rit
y

le
ve

l

(a) A plot depicts a radial basis function (σ = 0.9).
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(b) A plot depicts a radial basis function (σ = 0.4).

Figure 9.2: This example illustrates the influence of a parameter σ (standard deviation) on
a shape of a radial basis function, which is defined in (9.9) on page 118.

In practical applications, the weight wkl is commonly interpreted as a level of similarity
between vertices vk and vl representing samples xk and xl ∈ X, respectively. It is typically
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modelled using a radial basis function (RBF) as follows:

wkl = exp
(︃
−∥xk − xl∥

2σ2

)︃
, (9.9)

where a parameter σ denotes a standard deviation. We can consider σ as a scaling parameter
that controls how rapidly similarity (represented by means of a weight wkl) falls off with the
Euclidean distance between samples xk and xl. In the definition of a graph-cut (9.7), a factor
value 1

2 prevents counting each edge twice in a cut.

6

2

1

34

5

(a) labelled graph G

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
0 1 0 1 0 0
0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(b) adjacency matrix

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
3

2
3

2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(c) degree matrix

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0
−1 3 −1 0 −1 0

0 −1 2 −1 0 0
0 0 −1 3 −1 −1
0 −1 0 −1 2 0
0 0 0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(d) graph Laplacian

Figure 9.3: This showcase provides a simplified example of an undirected graph consisting
of 6 vertices. A minimum degree of this graph is 1, and a maximal one equals 3. For this
undirected graph, an adjacency matrix, a degree and a graph Laplacian matrices are outlined
either.

Since we want to maximize internal cluster connectivity and, consequently, to minimize
connections between the clusters A1, A2, . . . , Ak, it leads to solving a minimal k-cut (min-cut)
problem:

(A∗
1, A∗

2, . . . , A∗
k) = arg min

A1,A2, ...,Ak

cut(A1, A2, . . . , Ak). (9.10)

When a number of clusters k = 2, the min-cut problem (9.10) can be efficiently solved using
the Stoer–Wagner algorithm [109] recursively. Nevertheless, the problem becomes NP-hard
for any fixed k ≥ 3. There exist various algorithms running in a polynomial-time ∼ O

(︂
m2k

)︂
that provide a relaxed solution of the problem (9.10), see [110, 111, 112] for further details.

However, we do not typically attain a reasonable solution using the standard min-cut
approach [113]. Since similarity between two vertices is inversely proportional to the distance
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between them and a minimum cut (9.7) increases with the number of edges between the
partitions, it typically tends to a trivial cut separating an individual vertex from the rest
of a graph G. The way to exclude these singleton solutions is to explicitly ensure that the
clusters are sufficiently large by considering their internal cluster connectivity. Hagen and
Kahng introduced a technique called a ratio cut. It is defined as a fraction of a graph cut over
cardinalities of its components [114]. First, let us define the “characteristic” vector u ∈ Rm

associated with some partition A ⊂ V such that:

u
def= [u1, u2, . . . , um] , where uj =

⎧⎪⎨⎪⎩
1√︁

card(Ai)
if vj ∈ A,

0 if vj ∈ Ac.

⎫⎪⎬⎪⎭ , j ∈ {1, 2 . . . , m}. (9.11)

Using the definition (9.11), we can introduce a ratio cut so that:

Rcut(A1, . . . , Ak) =
k∑︂

i=1

cut(Ai, Ac
i )

card(Ai)
(9.12a)

=
k∑︂

i=1
uT

i Lui (9.12b)

=
k∑︂

i=1

(︂
UTLU

)︂
ii

= Tr
(︂
UTLU

)︂
, (9.12c)

where Tr(·) denotes a trace of a matrix, U = [u1, u2, . . . , uk], and L ∈ Rm×m is an unnor-
malized graph Laplacian matrix. The matrix L is defined such that:

L = W −D, (9.13)

where D ∈ Rm×m is a diagonal matrix commonly called a degree matrix. It contains degrees
of vertices in V on a main diagonal:

D =

⎡⎢⎢⎢⎣
deg(v1)

. . .
deg(vm)

⎤⎥⎥⎥⎦ (9.14)

where a degree associated with a vertex vi is defined as follows:

deg(vi)
def=

m∑︂
j=1

Wij . (9.15)

The example of a labelled graph and associated matrices W , D, and L is depicted in Fig-
ure 9.3.
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Now, we can write a problem of minimizing a ratio cut as a constrained trace minimization
so that:

(A∗
1, . . . , A∗

k) = arg min
A1, ..., Ak

Tr
(︂
UTLU

)︂
s.t. UTU = I. (9.16)

Since the formulation (9.16) takes the form of discrete energy minimization, it is known
that obtaining a global solution is generally an NP-hard problem. Relaxing this problem to
dispose of its discreteness, we allow the solution to take values in R. It results in the following
relaxed optimization problem:

H∗ = arg min
H∈Rn×k

Tr
(︂
HTLH

)︂
s.t. HTH = I. (9.17)

By using the Rayleigh-Ritz theorem [115], the solution of problem (9.17) is given by
setting the matrix H as the matrix containing the first k eigenvectors of a graph Laplacian
matrix L as its columns [116]. Afterwards, vector quantification or other clustering techniques
are commonly exploited for reconstructing the indicator vectors associated with the graph
partitions from this real-valued solution. New representations of samples in null-space L

correspond to the rows of H. It leads to the unnormalized spectral clustering introduced in
the widely cited paper by Luxburg [105]. From another point of view, this approach can be
interpreted as quantifying new representations of training vectors X that are projected onto
the null-space of a (discrete) Laplace operator Null(L).

9.2 Normalized spectral clustering overview

Studying publications dealing with the normalized approaches to spectral clustering, a reader
should put an effort into distinguishing between the original versions of the algorithms, and
their modifications or adaptations for particular problems. Note that there is no unique
convention in the literature, which approach is precisely related to a normalized one.

We can meet with using different operators such as a symmetric normalized Laplacian
matrix:

Lsym = D− 1
2 (D −W )D− 1

2 , (9.18)

its random walk version:
Lrw = D−1 (D −W ) , (9.19)

or, alternatively, a Markov matrix:

P = D−1W . (9.20)

Authors also exploit various proportions of spectra related to these operators, or a partic-
ular eigenvector for example the Fiedler vector. These approaches also differ in solving a

- 120 -



corresponding eigenproblem, e.g. a standard or generalized one, and decoding the indicator
vectors from spectra, e.g. using vector quantification or bisection techniques. We would like
to mention a highly cited technical report published by Verma and Meila [117]. It seems they
proposed modifying an original Shi Malik algorithm [118, 119]. However, their approach is
slightly different. Instead of the multiway bisection based on exploiting the Fiedler vector of
L that was obtained using a generalized eigenproblem:

Le = λDe, (9.21)

they processed the second dominant eigenvector of the matrix P , i.e. the eigenvector cor-
responds to the second dominant eigenvalue. While Meila and Shi [120] proved that these
approaches are equivalent in a manner of their clustering properties, the spectral properties of
a matrix P are additionally interpreted in the sense of random walk. Moreover, corresponding
eigenvalues obtained using (9.21) and these associated with P are from different ranges:

• the eigenvalues of P lie in [−1, +1],

• the eigenvalues attained using (9.21) belong to [0, 2].

Since these methods are linked together, we think, a good way could be focusing on them
chronologically.

The idea of the normalized spectral clustering and the corresponding preliminary results
presented for image segmentation problems were first published by Shi and Malik in the
previously mentioned conference paper related to the Conference on Computer Vision and
Pattern Recognition [118] held in 1997. Then, they extended it to a journal paper, see [119],
which could be considered as the prior work and, currently, one of the most widely cited
papers associated with normalized spectral clustering.

In these papers, the authors discussed the disadvantages of minimal k-cut problem (9.10)
for segmentation of real-world images. Specifically, they focused on the unnatural bias of
partitioning out the singleton sets. We mentioned such an issue in the previous section. To
overcome it, they proposed to incorporate a measuring of association among the vertices V
based on a volume of partition Ai denoted as vol(Ai), for i ∈ {1, 2, . . . , k}:

assoc(Ai, V) def=
∑︂

u∈Ai,t∈V
W (u, t) =

∑︂
u∈Ai

deg(u) = vol(Ai), (9.22)

into the graph cut formulation (9.7). This leads to a disassociation measure among graph
partitions called the normalized cut (NCut), which is defined as follows:

Ncut(A1, A2, . . . , Ak) def=
k∑︂

i=1

cut(Ai, Ac
i )

assoc(Ai, V) =
k∑︂

i=1

cut(Ai,Ac
i )

vol(Ai)
. (9.23)
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From a definition of an association measure in (9.22), we can see that a total cost of direct
connections from vertices in the partition Ai to all vertices in the graph G, note that including
these in Ai, is equal to the total degree of nodes belonging this partition. It arises from the
fact that if two vertices are not adjacent, then the related weight is 0. Using this fact, the
relation in (9.22) can be easily proven.

Comparing a ratio (9.12) and a normalized cut (9.23) approaches, both of them satisfy a
min-max clustering principle.2 Unlike a ratio cut, which minimizes the graph cut and simulta-
neously maximizes the cardinalities of desired components, minimizing a graph cut employing
a normalized approach is proportional to maximizing the volume of the components. It tends
that NCut could outperform RatioCut and provide a better quality solution in the sense of
higher compactness of the partitions for some practical applications, e.g. segmentation-based
object categorization [118, 119].

Recall. Compactness gives us an insight into how similar are samples belonging to the same
group. In practice, it is better to compare compactness with other typically used metrics, such
as the Davies-Bouldin criterium or the Silhouette index, which tests within-cluster consistency.
Moreover, not always higher compactness of an overall solution is better or more reasonable
than others. A counterexample could be finding defects (typically a small-size partition) in
images or, generally, outliers in an initial dataset. Using a proper method is problem/data
specific, and in-depth experiments provide us “a bigger picture” related to the quality of the
achieved results. We want to point out this fact because finding the better size-balanced
partitions could not be the best approach for all problem types. As we mentioned above, it
highly depends on the problem and nature of the data either.

Originally, Shi and Malik [118, 119] considered just special cases of graphs such that the
connectivity of these graphs is 1. They formulated a normalized cut as a trace minimization
problem in the following form:

H∗ = arg min
H∈Rn×k

Tr
(︂
HTLH

)︂
s.t. HTDH = I. (9.24)

We can determine a solution of (9.24) as in the case of the unnormalized spectral clustering.
Exploiting the Rayleigh-Ritz theorem, this solution is given by the matrix H containing the
first k generalized eigenvectors of a graph Laplacian matrix L (9.21) as its columns.

Since these eigenvectors represent indicator vectors embedded into a real-value domain,
we can use vector quantification techniques for reconstructing the indicator vectors, as in the
case of unnormalized spectral clustering. This leads to the normalized spectral clustering
presented in Luxburg [105]. Shi and Malik in their original approach, which is based on the

2The standard clustering paradigm mentioned in the previous sections: samples are reasonably divided into
clusters so that extra-cluster similarities are minimized, and within-cluster similarities are maximized.
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assumption that the connectivity of a graph G is 1, employed a bisection technique instead
of vector quantification.

Let us further denote: ˆ︂H = D
1
2H, (9.25)

then we can rewrite (9.24) as follows:

ˆ︂H∗ = arg minˆ︁H∈Rn×k

Tr
(︂ˆ︂HTLsym

ˆ︂H)︂
s.t. ˆ︂HT ˆ︂H = I, (9.26)

where Lsym = D− 1
2LD− 1

2 and is called the symmetric normalized Laplacian.3 By this sub-
stitution and exploiting the Rayleigh-Ritz theorem, we can observe that we can equivalently
solve the standard eigenproblem associated with Lsym instead of a generalized eigenproblem
arising from (9.24).

However, the features of the initial samples X projected into Null(Lsym) are proportional to
square roots of degrees corresponding to vertices V in the case of normalized spectral clustering
as we can see from the relation (9.25). Therefore, ˆ︂H does not contain the actual indicator
vectors related to the graph partitions A1, . . . , Ak. Still, it contains non-uniformly scaled
indicator vectors related to these partitions embedded into a real-value domain. Consequently,
the new coordinates of vectors X in Null(Lsym) could be in different ranges and they need
to be post-processed. We introduce two approaches on how to deal with this issue. Luxburg
proposed the first one, and the second is based on obtaining the relaxed indicator vectors
directly.

As in the case of the unnormalized spectral clustering, these new coordinates correspond
to rows of ˆ︂H. In [105], Luxburg proposed to normalize the new representations of training
samples by L2 norm there, i.e. a row normalizing:

˜︂Hi =
ˆ︂Hi

∥ˆ︂Hi∥
. (9.27)

In an ideal case, this normalization could not be necessarily required when degrees of vertices
are sufficiently similar, because this could not affect the indicator vectors by scaling (9.25)
and new representations could be used directly for subsequent processing. On the other hand,
when degrees of vertices differ significantly, such normalization does not change the statistical
distribution of the new representations of data but could affect outliers – typically samples
for those corresponding vertices of graph G have low degrees. Luxburg discussed this problem
from the perturbation theory point of view in [105].

3Note that Lsym is symmetric even the graph G models non-symmetric relations, e.g. a case of directed
graphs.
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While the proposed normalizing affects outliers that could lead to misclassifying them, we
can recover the relaxed indicator vectors from ˆ︂H directly. Let us consider an ideal case when
columns of H are piecewise constant,4 and degrees of all vertices V are non-zero. Then, we
can directly obtain indicator vectors embedded into the real-value domain by the following
multiplication:

H = D− 1
2 ˆ︂H. (9.28)

After post-processing ˆ︂H proposed above, we can employ vector quantifying techniques for
reconstructing discrete indicator vectors as in the earlier presented spectral clustering ap-
proaches.

9.3 Benchmarks

Image segmentation is a process of extracting meaningful information related to the structure
of objects, discerning various parameters, or separating the regions of interest corresponding
to foreground objects from the background of the image scene. This process is a crucial part
of modern image processing methods such as object detection, localization, or other real-world
applications.

Figure 9.4: Example of transverse CT
image of fibre-reinforced concrete.

In the most practical applications, regions of
interest are considered as parts of an image that
pixels have similar characteristics, e.g. grey level/-
colour, or similar local gradients in pixel points.

In cooperation with Institute of Geonics of the
Czech Academy of Sciences, we published paper
Advanced approach of material region detections
on fibre-reinforced concrete CT-scans [121], where
we proposed exploiting unsupervised learning tech-
nique, namely k-means++, for detecting homoge-
nous parts, say areas of specific materials, in trans-
verse CT (Computed Tomography) scans of fibre-
reinforced concrete. Essentially, by this applica-
tion, we go back to the Steinhaus’ idea associated

with partitioning solid material. Moreover, we introduce a technique for reduction of air distri-
bution that employs structural analysis based on connected components as small air bubbles
are undesirable in practical computations, see the example of achieved results in Figure 9.5
on the next page – source image depicted in Figure 9.4.

4In practice, the values are affected by numerical errors which depend on employed eigensolver, numerical
precision, scaling or normalizing eigenvectors during the computation.
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In this chapter, we present a few results achieved exploiting image segmentation-based
object categorization on benchmarks including volumetric images in Section 9.3.1 and photos
in Section 9.3.2.

Figure 9.5: Binary masks of achieved material regions, namely from left concrete, air, fibres.

9.3.1 2-phase segmentation of volumetric images

In this section, we focus on the 2-phase image segmentation on volumetric (3D) images, for
which we employ unnormalized and normalized spectral clustering methods and compare
obtained results. We cooperate on this application with two experts Dr. Stanislav Harizanov
and Prof. Svetozar Margenov from Institute for Parallel Processing, Bulgarian Academy
of Sciences.5 This work is currently unpublished in any conference or journal paper; just
part of it was outlined in the following preprint [122], where a stochastic approach based on
Bartlett test for estimating dimension of dim Null(L), i.e. null-space of a graph Laplacian, is
discussed.6

Volumetric images used for benchmarking the approaches are available on the following
GitHub page https://github.com/ml4py/speclus4py, where the owners’ consent is
mentioned in Acknowledgements. The volumetric images are visualized in Figure 9.6. Recall.
In a traditional approach related to spectral clustering [105], vectors belonging to an initial
set X are projected onto the null space Null(L). A dimension of this null space equals:

dim Null(L) = mL(λ0) , (9.29)

where mL(λ0) denotes a geometric multiplicity of a zero eigenvalue λ0 corresponding to an
operator L.

5The IPP BAS website http://www.bas.bg/clpp/en/indexen.htm
6Authorship note: Since an author of this thesis is only author of the preprint [122], and the preprint is

currently unpublished, a some sections of results are just copied and paste in this section.
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(a) 3D model: A trabecular
bone. Source: bone.vti.

(b) 3D model: ball65.
Source: ball.vti.

(c) 3D model: foam64,
a detail size equals to 1 voxel.
Source: foam_1.vti.

Figure 9.6: Visualization of volumetric images used in this section for benchmarking.

Then, such transformed samples are clustered, e.g. by applying vector quantification
techniques namely k-means (Section 8.2) or k-means++ (Section 8.3). In many practical
applications employing the spectral clustering, one assumes that an actual number of clusters
k∗ associated with an underlying model is:

k∗ = dim Null(L). (9.30)

Since the last step of spectral clustering is typically based on the vector quantification
using the “k-means like algorithms,” we can consider an underlying model as a special case
of the Gaussian mixture model. Therefore, an optimal k∗ could be estimated such that it
minimizes the Bayesian information criterion [123] or the Akaike information criterion [124],
discussed in [125], or seeking inflexion point in scree plot representing profile of eigenvalues
[126]. A more practical way could be to determine dim Null(L) statistically based on testing
equality variances of the smallest eigenvalues – presented in [127, 122] and will be discussed
in the following text.

This test was firstly proposed by Bartlett [128] in the context of estimating the number
of factors represented by means of eigenvectors and associated with the q largest eigenvalues
of a covariance matrix Σ ∈ Rn×n in the sense of PCA. We refer the following comprehensive
survey on significant results in this area [129].

The standard Bartlett test formulates the null-hypothesis H0 that k eigenvalues associated
with unselected eigenvectors of Σ have a small magnitude and small variance. Assuming this,
taking the likelihood ratio statistic:

Vk =
d∏︂

i=q+1
λi/λ̄k, d = k + q, λ̄k = 1

k

d∑︂
i=q+1

λi (9.31)
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Figure 9.7: This screeplot illustrates a profile of the first 10 eigenvalues associated with the
3D unnormalized Laplacian for a trabecular bone depicted in Figure 9.6a. Finite differences
were computed using 26 nearest neighbours, and similarity among them was determined
using an RBF function (standard deviation σ = 0.01). We solved associated eigenproblem
employing the SLEPc framework (solver type ARPACK, rtol=1e−1, nev=10).

and linkage factors into account [130, 131].

The authors showed that the statistic T defined as:

F =

⎛⎜⎝n− q − k2 + 1
3k

− 1
6 +

q∑︂
i=1

λ̄
2
k(︂

λi − λ̄k

)︂2

⎞⎟⎠ ,

T = −F ln Vk,

(9.32)

follows χ2 distribution with 1
2 (k − 1) (k + 2) degrees of freedom. Principle of the test is to find

the smallest acceptable a value of q so that P (X < T ) ≤ 1−αcrit, where αcrit is a significance
level that typically chosen as 0.05 or 0.01.

From a concept point of view, we can straightforwardly see similarities between the spec-
tral clustering and PCA. Both involve eigen decomposition of the square symmetric matrix,
however locations of relevant information are associated with opposite parts of spectra. This
arises from the fact that the Laplacian matrix is considered as the scaled precision matrix Q,
which is pseudoinverse of covariance matrix:

L = δQ = Σ†, (9.33)

we refer the followning paper [132] for further information. It seems to be reasonable to ex-
ploit T ∼ χ2 for testing homoscedasticity of the smallest eigenvalues of L, ergo estimating
dim Null(L), with some minor modification of the original hypothesis test (9.32). This is
originally proposed in Bruneau et. al. [127]. We proposed an additional correction of numer-
ical errors, which could affect the test statistic. This post-processing approach is outlined in
Algorithm 8.
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Algorithm 8: EigenvalsPostprocess
Input : Λ, err

1 for i = 1→ d do
2 if erri ≥ 1. then
3 break;
4 exp← Floor (log10 (erri));
5 ˆ︁λi ← Round (λi,−1 ∗ exp);
6 if ˆ︁λi = 0 then
7 ˆ︁λi ← Pow (10, exp);
8 if λi < 0 then
9 ˆ︁λi ← −ˆ︁λi;

Output: ˆ︁Λ = diag
(︂ˆ︁λ1, ˆ︁λ2, . . . , ˆ︁λd

)︂

(a) From left: a visualization of a 3D model related
to the ball65 dataset, an example of a horizontal
slice associated with an underlying volumetric im-
age (65 × 65 × 65 voxels).
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(b) The first 7 eigenvalues associated with nor-
malized Laplacian so that standard deviation of
RBF is σ = 0.01, finite differences computed us-
ing knn = 6. Solver ARPACK, rtol = 1e−4,
nev = 10).

Figure 9.8: An example of spectrum related to the normalized Laplacian affected by
rounding-off errors caused by limits of floating point arithmetic so that it consists of a negative
eigenvalue.

Another common issue goes from rounding-off errors caused by limits of floating-point
arithmetic. Eigensolver could return some small negative eigenvalues very close to 0 even L

is a symmetric positive definite matrix. We show an example illustrating this in Figure 9.8.
By similar comments as in the previous case, we cannot implicitly consider these eigenvalues
as 0. On the other side, comparing negative eigenvalues causes non-defined value related to
(9.32), specifically in the term ln Vk. Since the test is based on analysing variances among
eigenvalues, we can shift them to be positive without loss of generality so that:

λ̂i = λi + 2|λ0|. (9.34)
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While spectral clustering provides regularization of noisy data implicitly7, we do not deal
with meshes corrupted by random noise in following experiments. This setting helps us focus
on object geometries, their representations in null spaces of related Laplacians, and we can
then straightforwardly compare clustering results with ground truth by means of the Hamming
distance ∥ · ∥H to analyse how precisely the merging works.

Int the following experiments, we set a sufficiently high relative tolerance rtol = 1e−3
in case of the ARPACK eigensolver [136]. This value was chosen as a trade-off between
numerical computation stability and a faster convergence rate. A high tolerance was set for
the k-means solver as well. Specifically, this was 0.1. An initial guess was determined using
the k-means++ initialization, and attempts for restarting the k-means solver was 5. Setting a
number of eigenpairs to compute, i.e. -eps_nev option in the SLEPc framework [137], seems
to be tricky, because not proper setting could cause a slower convergence rate or a solution
diverging. A common recommendation is to set this value higher than a number of interesting
eigenpairs. We tested various eigenpair counts, and it seems a good value for the following
experiments is 50.

Computations run parallelly that 40 MPI processes on the Hugo multiprocessor system,
technical parameters are outlined in Table 9.1. Since parallel addition/multiplication are not
commutative and we run computation determining subset a spectra of lower magnitude that
rtol is high, the solver could not converge to the same solution for different runs. Thus, a test
was repeated 100 times and reported observations are in a form mean± std. The results are
summarized in Table 9.2 on page 131.

Processor 4× Intel Xeon Gold 6152 @ 2.1 GHz (22 cores)
RAM 1536 GB (48× 32 GB) DDR4-2666 MHz
Graphical accelerator NVidia GTX 1050 TI 4GB

Table 9.1: Parameters of Hugo multiprocessor system (Huawei FusionServer 2488H V5).

Analysing these results, we can see that an issue related to capture the geometry of the
mesh arose in cases, where unnormalized Laplacian was build using 6 knn and normalized one
of the same knn that the new representations of voxels were normalized. The first issue is a
consequence of non-commutativity parallel addition/multiplication, and a high relative toler-
ance of the eigensolver, which converged to the solution that shrank a null-space dimension
to 5 in 6 cases and new representations could not capture the geometry of the mesh properly.
The second one is related to affecting outliers by additional normalization mentioned above.
These affected outliers are depicted in Figure 9.9 (p. 131).

7Regularization properties arise from the Mumford and Shah regularization point of view mentioned [133]
in author’s previous works [134, 135].
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Figure 9.9: A visualization of a solution associated with the normalized Laplacian of the 6
knn, that coordinations of new representations were normalized. Misclassified voxels are red
colored.

Comparing a dimension of a null-space related to the unnormalized and normalized Lapla-
cian associated with 6 knn, we can see that dim Null(L) > dim Null(Lsym). It results that the
unnormalized Laplacian is slightly connected with RatioCut whereas the normalized Lapla-
cian to NCut [105]. Since RatioCut minimizes the graph cut and simultaneously maximizes
cardinality of desired components and NCut is proportional to the volume of these compo-
nents, normalized spectral clustering provides a smaller number of components related to the
similarity graph G.

Increasing the size of the neighbourhood, σmax and the number of iterations needed for
converging eigensolver decreased. This follows a few dependent facts. By increasing the size
of the neighbourhood, more voxels are incorporated there, and we need to filter out voxels
from different groups more precisely by decreasing σmax. It leads to maximizing internal
cluster connectivity and minimizing intra-cluster variance, and, from the spectral properties
of the operators, better separating zero eigenvalues from the rest of the spectra causing quicker
convergence rate of the eigensolver. Thus, we basically reconstructed relaxed indicator vectors
of components in cases of knn 18 and 26 for the both unnormalized and normalized Laplacians.
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eigenvecs operator eig. solver revr. Bartlett test KMS ∥ · ∥Hpostproc. type #knn σmax #iters. p-val. dim Null #iters. RSSBest
– unnorm. 6 0.127 279± 60 3.4e−4± 7.3e−4 7± 1 2 5.4e+0± 1.1e−1 1.2e4± 5.1e4
– unnorm. 18 0.123 104± 15 4.7e−2± 2.5e−3 2 2 5.6e−8± 3.3e−8 0
– unnorm. 26 0.122 103± 13 3.9e−2± 4.8e−3 2 2 1.8e−6± 5.7e−8 0

norm. norm. 6 0.126 172± 9 8.0e−5± 2.6e−5 ≈ 7 4 2.6e+4± 7.1e+1 16, 896
recov. 2 1.4e+0± 7.1e−2 0
norm. norm. 18 0.122 71± 1 2.9e−2± 6.4e−3 2 2 4.9e−7± 1.1e−7 0
recov. 2 2.5e−1± 1.9e−1 0
norm. norm. 26 0.122 61± 1 0.0365 2 2 1.2e−7± 6.3e−8 0
recov. 2 5.1e−1± 3.2e−1 0

Table 9.2: Comparison of the results attained by means of the unnormalized and normalized Laplacians associated with the foam64
(1 voxel) dataset depicted in Figure 9.6c. The results are summarized from 100 runs of each setting and observations reported as
mean± std if that makes a sense. Associated eigenproblems were solved employing the SLEPc framework such that solver type set
to ARPACK, rtol=1e−3, nev=50.
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9.3.2 Image segmentation-based object categorization

In the previous text, we introduced a direct application of the k-means to problem of image
segmentation. However, in case of photos showing “real-world” scenes such as cats playing
with a ball, a more natural way to formulate image segmentation is exploiting the minimization
of the Mumford and Shah functional [133]:

arg min
u(x,y), B

⎧⎪⎨⎪⎩α

∫︂
Ωroi

[g(x, y)− u(x, y)]2dS + β

∫︂
int(Ωroi)

[ ∇u(x, y) ]2 dS + γ|B|

⎫⎪⎬⎪⎭ , (9.35)

where g (x, y) : Ω → Rp is an input image function such that p = 1 in order to grayscale
images and p = 3 in case of colour images. Ω denotes the domain of image function g (x, y),
Ωroi ⊂ Ω is region of interest, and int (Ωroi) := Ωroi \ B. Function u (x, y) is solution of
segmentation problem; typically, u (x, y) ∈ C1

loc, B = ∂Ω is boundary among objects in image
scene. Commonly, we suppose that B is piecewise smooth curve. The integrals are taken
in the Lebesgue sense. Scalars α, β, γ are tuning parameters and their values are problem
dependent.

Figure 9.10: From left: piecewise smooth image function g(x, y) : Ωroi → R3 and its C1
loc

fuction approximation u(x, y) : Ωroi → R3.

In paper [134], we formulated problem of image segmentation for piecewise smooth images,
see Figure 9.10, and transformed the Mumford and Shah functional minimization problem as
a minimization of an artificial quadratic term on a general open set, which directly leads to
problem formulation as eigenproblem of graph Laplacian. Moreover, we showed fundamental
connections between the Laplace-Beltrami equation on the Riemannian manifold and the
eigenproblem. Typically, the similarities among graph vertices, which represent pixels, are
modelled using an RBF function:

k (x, ˆ︁x) = exp
(︄
−∥x−

ˆ︁x∥2
2σ2

)︄
, (9.36)

where is σ is standard deviation. In this paper, we also demonstrated a capability of spectral
clustering, which is called image segmentation-based object categorization in image processing
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communities, performed on real-world scenes, example is illustrated in Figure 9.11.

Figure 9.11: Cattedrale di Santa Maria del Fiore: the demonstration of image segmentation-
based object categorization. [138]

Further, in paper [135], we generalized the problem above and showed a connection with
the Helmholtz equation. Afterwards, we point out, in case of Neumann boundary condition
∂u
∂n on ∂Ω, the solution u of the Helmholtz equation is that u ∈ L2. Additionally, we examined
the connection between the Laplace operator and the graph Laplacian. For improving the
numerical stability, we propose “a non-glueing image domain decomposition” based on the
idea of not considering boundaries related to regions in the problem formulation.

Figure 9.12: Tatra T603: illustration of non-glueing image domain decomposition, presented
in [135].
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Chapter 10

Conclusions

The aim of this thesis is to study classical machine learning (ML) models and demonstrate
their ability to handle complex and data-intensive applications, involving adaption of deter-
ministic solvers to effectively train these models (primarily classification models) in parallel.
Unlike deep neural networks, which are commonly investigated in ML research, classical mod-
els could use solvers based on deterministic approaches. This approach simplifies feeding
samples to the training procedure, since the whole data set is used instead of batches. The
training of classical models also offers clear explanation of attained model qualities and makes
easier an analysis of the numerical behavior of the underlying solver.

The main content of this text is organized into two parts based on the concept and purpose
of the introduced models. The first part focuses on supervised learning on classification tasks,
while the second part discusses and presents results related to unsupervised learning. In the
second part, the author outlines the first results of research on ML, in which he was involved
during first and second years of his doctoral studies.

The theoretical background associated with supervised learning, which are represented by
means of SVM models, was introduced in two separate chapters 2 and 3. The first of them was
dedicated to hard-margin approaches for linearly separable training samples. Even though this
approach is not practically useful, it provides a fundamental framework for introducing soft-
margin approaches later in Chapter 3. First, Chapter 2 provided a motivation in Section 2.1,
where a possible poor generalization ability of a simple perceptron was discussed. To overcome
this issue, a classification approach based on maximal-margin classifiers was introduced in
Section 2.2. This section sets up a definition related to a maximal margin in the form of
a normalized functional margin concerning ∥w∥, where w represents a normal vector of a
separating hyperplane. Then, a framework based on the Vapnik-Chervonenkis dimension
(VC dimension) for quantifying a classifier performance was outlined, and it was shown that
a classifier having this dimension reasonably small attains a good generalization ability in the
sense of the bias-variance tradeoff. Based on this observation, the primal hard-margin SVM
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was then formulated. Section 2.3 briefly introduced a theory beyond the Lagrange duality,
which was applied to the formulation of dual-hard margin SVM later in this section.

However, real-world data are mainly not linearly separable. The approach based on
soft-margin for SVMs solves this issue so that a reasonable number of training samples can
be misclassified so that misclassification error is quantified using the hinge loss function. The
soft-margin SVMs were then introduced in Chapter 3, including l1-loss and l2-loss formu-
lations in both the primal and dual forms for complete and relaxed-bias approaches. The
main difference between the l1-loss and l2-loss formulations lies in properties of the Hessian
matrices and sparsity of a classification models:

• the l1-loss SVM has SPS Hessian, which could cause a slow convergence rate, on the
other hand, it induces model sparsity, shrinks coefficients associated with some features
to zero, and does a sort of “automatic” feature selection,

• the l2-loss SVM has SPD Hessian, which could result in faster model training, however,
a model is not sparse.

In the case of the relaxed-bias classification, bias b is not considered in a classification model,
however, it is included in the problem by means of augmenting the vector w and each sample
with an additional dimension, discussed in Section 3.3. This approach results in the dual
formulation without a homogenized equality constraint, and arising optimization problem
could be cheaper to solve. The benchmark section, where these approaches were compared to
each other, concluded this chapter.

When a classifier has been trained, it is essential to understand how it represents and gen-
eralizes the associated problem. The metrics for and approaches evaluating the performance
of classifiers were introduced in Chapter 4, including techniques for parameter selection.

An optimization of underlying quadratic programming (QP) solvers for effectively training
SVM models was outlined, discussed, and tested in Chapter 5. The ingredients for optimal
initial guess, adaptive expansion step length for the MPRGP algorithm, and variants of the
SMALXE algorithm such as SMALXE-M and SMALXE-ρ were introduced. The theory guar-
antees R-linear convergence of the MPRGP algorithm for a fixed step length less than 2

∥Q∥ ,
where Q represents a Hessian matrix. However, this step-length is commonly really small in
the case of the SVM problems (caused by a large norm of Q), which results in many expansion
steps. The advantage of adaptive expansion methods on convergence rate was also studied in
this chapter. The presented results are done in PermonSVM, Octave, and Python.

PermonSVM is a software package that was primarily developed for training SVM models
on supercomputer systems, and was introduced in Chapter 6. It provides an implementation
to train SVM models in parallel, and supports multi-node multi-GPU approach for AMD and
NVidia graphic cards using HIP respective CUDA trough backends implemented in PETSc.
SVM packages in commonly used ML libraries are limited to tens of thousands of samples to

- 136 -



solve complete dual formulations. The largest complete dual problem presented in this thesis
had more than 1.6 million training samples and over 3 million features, and it was related to
suspicious URL prediction. The problem was successfully solved in 211s on 144 CPU cores
(Barbora supercomputer at IT4Innovations) and the attained model achieved 94.68% in F1
metrics. That makes PermonSVM a unique machine learning library. The effective
loading of data from a parallel file system was also discussed. For this purpose, a loader of the
HDF5 format inspired by MATLAB v7.3 structure was implemented in the PETSc library,
this loader was introduced in more detail in Section 6.2.

The development of PermonSVM, the scalability of QP solvers implemented in PermonQP
used for training models, and employing PETSc as a building block became the main reasons
for collaboration with world-leading research institutes, namely the Argonne and Oak Ridge
National Laboratories (USA), aimed at wildfires localization in Alaska. Just for clarity, it
took almost 4 years to be contacted by Dr. Richard Mills (Argonne National Laboratory),
and another 1 year than he became a co-supervisor of this thesis. The results of this coop-
eration were presented at the premier international conferences: the AGU Annual Meeting
(USA), the IALE North America Annual Meeting (USA), the IEEE International Conference
on Data Mining (USA), and the SIAM Conference on Computational Science and Engineer-
ing (NL). The largest area used in benchmarks covered approximately 722 thousand km2,
corresponding to 42% of Alaska area. For training using classical models on such large data
set, it was necessary to completely redesign workflow, which currently supports functionality
for fuzing multispectral-temporal satellite images (reflectance, temperature, and vegetation
indexes), data transformations and filtering, and finally retrieving data sets (training, cali-
bration, and test), and visualization functionality to validate each step in data processing.
The workflow (over 10 thousand lines of code in Python) currently can handle satellite data
from MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra
satellite, which NASA operates. Further, the MTBS product can be used for labeling regions
on satellite images that were affected by fire. The best model achieved performance around
0.78 and 0.86 in mIoU and F1 metrics, respectively. Details about this application, imple-
mentation details were introduced in Chapter 7. Moreover, two articles in form of interview
were published in Academik or Universitas journals; the articles are written in Czech and the
links on them are outlined in Appendix C.4.

The last two Chapters 8 and 9 in this thesis focused on the topics of unsupervised learning,
mostly clustering approaches. Chapter 8 covered vector quantification methods represented
by the Lloyd-type algorithms such as k-means, k-means++, and their variants, while Chap-
ter 9 introduced spectral clustering. The theoretical background presented there is mostly
in the form of a brief review, and the approaches presented on two applications. The first
one showed the detection of brittle and ductile fracture on a steel sample, which has been
damaged by the drop-weight tear test, using vector quantification techniques, and the second
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one employs spectral clustering for image segmentation on photos and volumetric data. More-
over, there were outlined parallel implementations of these methods, and, in Section 9.3.1, a
statistical approach based on the Bartlett’s test of homogeneity of variances for estimating
the multiplicity of zero eigenvalue of the Laplace matrix was discussed as well.

10.1 Overview of author’s contribution

From the author’s point of view, the main contribution of this thesis is to create applications
involving and connecting knowledge from multiple research fields, including parallel program-
ming for distributed model training, big data analysis, statistics, optimization, geoinformatics,
remote sensing, and environmental engineering. The greatest achievement presented in this
thesis is designing and implementing a workflow for wildfire localization in Arctic Alaska using
multispectral-temporal satellite images and classical models, including SVM and XGBoost.
This workflow incorporates various libraries and technologies, e.g. branca, GDAL, Google EE
Python API, folium, OpenCV, pandas, RAPIDS, scikit-learn, scipy, and PermonSVM imple-
mented for distributed model training on supercomputer systems. Gratefully, this workflow
is being used and adopted by researchers from world-leading research institutes, Argonne and
Oak Ridge National Laboratories (USA). The second significant achievement mentioned in
this work is implementation of PermonSVM (and the whole PERMON toolbox) and mention
it as external software based on the PETSc framework on the official PETSc web pages.

For effective training of models, the QP solvers implemented in the PermonQP package
have been adopted, which involves optimal settings of parameters, selecting suitable initial
guess, using adaptive expansion approaches, or testing variants of he SMALXE algorithms.
Other adaptations (directly related to solver modification) include effectively implementing a
warm-start approach for optimal parameter selection using grid-search combined with cross-
validation. This approach is based on scaling a solution attained for the previous combination
of parameters. Last, a stopping criterium considering a duality gap between primal and dual
functional was developed for l2-loss SVM formulation. These modifications and adaptations
done on QP solvers are other core contributions of this doctoral thesis.

Further, the author attempted to provide a view of SVM formulations, including du-
alization using the Lagrange duality, and, additionally, introduced both primal and dual
formulations in a matrix form beside standardly used formulations in “a sum form.”

The contributions to a part related to unsupervised learning may involve parallel im-
plementation of vector quantification algorithms demonstrated on an application focused on
detecting brittle and ductile regions of steel sheet fractured by drop-weight tear test. The next
one could be an improved approach for estimating the multiplicity of zero eigenvalues used
in spectral clustering and image segmentation (volumetric data and photos) using spectral
clustering.
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The list of author’s publications is mentioned in Appendix A, research projects can be
found in Appendix B, and other activities (involving supervising students and software devel-
opment) in Appendix C.

10.2 Possible directions of further research

The application of wildfire localization involves many subtasks, which offer room for further
improvement, development, and research. One possible direction could be using hybrid ML
models, combining classical models such as SVM or XGBoost with deep neural networks.
Since the semantic segmentation models used for wildfire localization are basically time series
classifiers, we can increase their complexity by combining them with FCN-LSTM [139], i.e.
fully convolutional recurrent neural network, or UNet modified for processing a series of
images, e.g. LSTM-UNet [140, 141]. In these approaches, the neural networks serve as a
feature extractor and SVM, or XGBoost, is then used as a classification layer. This could
also require a modification of the training phase associated with these classical models to
a mini-batch approach and redesigning the QP solvers, such as MRPGP or SMALXE, to a
stochastic manner. Other research could require the optimal selection of unknown parameters,
e.g. using the Bayesian optimization [142] instead of an essential grid-search.
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